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m-Harmonic Flow

NORBERT HUNGERBÜHLER

Abstract

We prove that the m-harmonic flow of maps from a Riemannian manifold M of dimension
m into a compact Riemannian manifold N has for arbitrary initial data of finite m-energy a global
weak solution which is partially regular, i.e. up to finitely many singular times tl , ... , tk the
gradient is in space-time. The number k of singular times is a priori bounded in terms of the
initial energy and the geometry. Two solutions with identical initial data and bounded gradient
coincide.

1. - Introduction

Let M and N be smooth compact Riemannian manifolds without boundary
and with metrics y and g respectively. Let m and n denote the dimensions of
M and N. For a C 1-map f : M -~ N the p-energy density is defined by

and the p-energy by

Here, p denotes a real number in [2, oo[, Idfx I is the Hilbert-Schmidt norm
with respect to y and g of the differential d fx E 0 Tf(x)(N) and J1 is
the measure on M which is induced by the metric.

The motivation to consider this class of energies is twofold: One motivation
is the physics of liquid crystals if we think of a liquid crystal as consisting
of bar-shaped particles described by a function f : S2 C JR3 -+ or f :
S2 c JR3 -+ S2 if the bars have distinguishable ends. Critical points of the p-
energy then correspond (in this model) to stationary states of the liquid crystal

Pervenuto alla Redazione il 22 gennaio 1996 e in forma definitiva il 12 marzo 1997.
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and the energy flow below suggests some aspects of its dynamical behavior
(see e.g. [18]). The mathematical motivation for the p-harmonic flow is the

general interest in geometric evolution problems of which the p-harmonic flow
is a highly nonlinear and degenerate example and shares some features with
harmonic maps and harmonic flow (p = 2). The main source of difficulty is
that the equations exhibit a supercritical growth and since several years there
has been an increasing interest in how the additional information given by the
geometric structure of the problem can be used to establish compactness and
existence results (see e.g. [43], [57], [52], [23], [38], [62], [39], [40], [41]).

For concrete calculations we will need E( f) in local coordinates:

Here, U c M and Q c JRm denote the domain and the range of the coordinates
on M and it is assumed that f (U) is contained in the domain of the coor-
dinates chosen on N. Upper indices denote components, whereas fa denotes
the derivative of f with respect to the indexed variable xa . We use the usual
summation convention, and always means .,/I de-t y 1.

If p coincides with the dimension m of the manifold M then the energy
E is conformally invariant.

Variation of the energy-functional yields the Euler-Lagrange equations of
the p-energy which are

in local coordinates. The operator

is called p-Laplace operator (for p - 2 this is just the Laplace-Beltrami op-
erator). On the right hand side of (3) the rfj denote the Christoffel-symbols
related to the manifold N. According to Nash’s embedding theorem we can
think of N as being isometrically embedded in some Euclidean space 1~k since
N is compact. Then, if we denote by F the function f regarded as a function
into N c R k, equation (3) admits a geometric interpretation, namely

with Ap being the p-Laplace operator with respect to the manifolds M and 
For p &#x3E; 2 the p-Laplace operator is degenerate elliptic. (Weak) solutions

of (3) are called (weakly) p-harmonic maps.
The regularity theory of weakly p-harmonic maps involves an extensive

part of the theory of nonlinear partial differential equations. We mention the
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contributions of Hardt and Lin, Giaquinta and Modica, Fusco and Hutchinson,
Luckhaus, Coron and Gulliver, Fuchs, Duzaar, DiBenedetto, Friedman, Choe,
and refer to their work listed in the bibliography. One of the most important
recent results is due to H61ein [38], who proved regularity of weakly harmonic
maps on surfaces.

One possibility to produce p-harmonic maps is to investigate the heat flow
related to the p-energy, i.e. to look at the flow-equation

or explicitly for (4)

where A ( f ) ( ~ , ~ ) is the second fundamental form on N. For p = 2 Eells
and Sampson showed in their famous work [17] of 1964, that there exist global
solutions of (4) provided N has non-positive sectional curvature and that the flow
tends for suitable tk - oo to a harmonic map. We see that under the mentioned
geometric condition the heat flow also solves the homotopy problem, i.e. to find
a harmonic map homotopic to a given map. Surprisingly, also a topological
condition on the target may suffice to solve the homotopy problem. Lemaire [45]
(and independently also Sacks-Uhlenbeck [54]) obtained this result under the
assumption that m = 2 and 1r2(N) = 0. For negative sectional curvature and
arbitrary p &#x3E; 2 the homotopy problem was solved by Duzaar and Fuchs in [15]
by using different methods than the heat flow.

Struwe proved in [58] existence and uniqueness of partially regular weak
solutions of the harmonic flow on Riemannian surfaces. Recently, Freire ex-
tended the uniqueness result to the class of weak solutions in x [0, T])
with non-increasing energy (see [20], [21], [22]). In the higher dimensional
case Y. Chen [4] (and independently Keller, Rubinstein and Stemberg [42] as

well as Shatah [56]) showed existence of global weak solutions of the harmonic
flow into spheres by using a penalizing technique. This technique together with
Struwe’s monotonicity formula (see [59]) was.used in the corresponding proof
for arbitrary target-manifold N (Chen-Struwe [6]). The existence of weak so-
lutions of the p-harmonic flow into spheres was shown by Chen, Hong and the
author in [5]. This result has been extended to homogeneous spaces as target
manifolds by the author in [40].

Parallel to this development the theory of degenerate parabolic systems with
controllable growth has been developed by DiBenedetto, Friedman, Choe and
other authors (see bibliography).

A2 is a linear elliptic diagonal matrix operator in divergence form. For

p &#x3E; 2 (0  p  2) the operator is degenerate (singular) at Vf = 0. The right
hand side of (6) is for p - 2 a quadratic form in the first derivatives of f
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with coefficients depending on f. These strong nonlinearities are caused by
the non-Euclidean structure of the target manifold N and cannot be removed
by special choices of coordinates on N unless N is locally isometric to the
Euclidean space R’~. But even in this case the space of mappings from M to
N does not possess a natural linear structure unless N itself is a linear space.
In general, the right hand side of (6) is of the order of the p-th power in the
gradient of f (non-controllable or natural growth).

Our main existence result for the m-harmonic flow is Theorem 10 in Sec-
tion 3.7. The uniqueness results are located in Section 4.

Acknowledgements. I would like to thank Prof. Michael Struwe for his

encouragement and many helpful discussions and suggestions. I would also
like to thank Prof. Jfrgen Moser for his interest in this work and his valuable
remarks.

2. - A priori estimates

We start with the definition of the energy space:

DEFINITION 1. The space of mappings of the class from M to N is

for it-almost all x E M}

equipped with the topology inherited from the topology of the linear Sobolev
space W1,P(M, JRk).

The nonlinear space W1,P(M, N) defined above depends on the embedding
of N in This fact does not cause any problems if M and N are compact
since then different embeddings give rise to homeomorphic spaces W1,P(M, N).

The space N) defined as the closure of the class of smooth func-
tions from M to N in the W1’P-norm is contained in N) but does
not coincide with the latter space in general (this fact gives rise to the so

called "gap phenomenon" of Hardt-Lin [37]). This important observation was
first made by Schoen and Uhlenbeck: see Eells and Lemaire [16] as a main
reference. However, we have N) = N) if dim(M) = p (see
Schoen and Uhlenbeck [55], Bethuel [1] ] or Bethuel and Zheng [2]).

The regularity of minimizing p-harmonic mappings between two compact
smooth Riemannian manifolds has been widely discussed, see Hardt and Lin [37]
Giaquinta and Modica [32], Fusco and Hutchinson [31], Luckhaus [47], Coron
and Gulliver [10] and Fuchs in [25] who also discussed obstacle problems for
minimizing p-harmonic mappings (see [24] and [27]-[30]). The results of these
investigations may be summarized briefly as follows:
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Suppose 1  p  oo and let M and N be two smooth compact Riemannian
manifolds, M possibly having a boundary a M. Consider mappings f : M - N
minimizing the p-energy and having fixed trace on aM. Such a minimizer f
is locally Holder continuous on M B Z for some compact subset Z of M B a M
which has Hausdorff dimension at most dim(M) - [p] - 1. Moreover Z is a
finite set in case dim(M) = [ p] + 1 and empty in the case dim(M)  [p] + 1.
On (M B Z) B a M, the gradient of f is also locally Holder continuous.

The set Z is defined as the set of points a in M for which the normalized
p-energy on the ball Br (a),

fails to approach zero as r ~ 0. The technique to prove the above assertions
essentially is to show that, near points a E (M B Z) B a M, this normalized integral
decays for r ~ 0 like a positive power of r. Then, local Holder continuity
of f on (M B Z) B a M follows by Morrey’s lemma. The proof of the Holder
continuity of the gradient of f is much more difficult.

Instead of looking for minimizers of the p-energy, Uhlenbeck investigated
weak solutions of systems of the form

where p satisfies some ellipticity and growth condition (see Uhlenbeck [63]).
Her work prompted an extensive study of quasilinear elliptic scalar equations
having a lack of ellipticity: Evans in [19] and Lewis in [46] showed the c1,a-
regularity for rather special equations. Later DiBenedetto [11] and Tolksdorf
in [60], [61] proved C1,a-regularity of the solutions of rather general quasilinear
equations which are allowed to have such a lack of ellipticity. It is remarkable
that Ural’ceva in [64] obtained Evan’s result already in 1968.

For such equations and systems, C1,a-regularity is optimal. Tolksdorf gave
in [60] an example of a scalar function minimizing the p-energy and which
does not belong to if a E]0, 1[ is chosen sufficiently close to one.

In contrast to equations, everywhere-regularity cannot be obtained for gen-
eral elliptic quasilinear systems. The counterexample of Giusti and Miranda
in [33] shows that it is generally impossible to obtain C"-everywhere regu-
larity for homogeneous quasilinear systems with analytic coefficients satisfying
the usual ellipticity and growth conditions. Nevertheless almost-everywhere-
regularity has been obtained for rather general classes of quasilinear elliptic
systems: see Morrey [49] or Giusti-Miranda [33].

As far as the regularity of the heat flow of p-harmonic maps for p &#x3E; 2 is
concerned only results in the Euclidean case are known: In [13] DiBenedetto
and Friedman investigated weak solutions f : Q x (0, T] -~ R’ of the parabolic
system 

-
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where Q is an open set in The main result of DiBenedetto and Friedman
is that for max {1, +2 ~  p  oo weak solutions of this problem are regular
in the sense that V f is continuous on Q x (0, T ] with ) V f(x, t ) - f (x , t I 
i

in any compact subset S2 of Q, where cv depends only on
S2 and the norms of f in the spaces T ; L 2(Q)) and LP(O, T ; 
In [14] the same authors obtained for p &#x3E; max( 1 , ~2013} Holder regularity of V f
in Q x (0, T] using a combination of Moser iteration and De Giorgi iteration.
H. Choe investigated in [7] weak solutions of the system

where b respects the growth condition

and where f E C°(0, T ; T ; W1,P(Q». In this case, Choe proves
f E x (0, T]) for some a &#x3E; 0 provided f E x (0, T]) for some
ro &#x3E; "(2-P)* Notice that the p-harmonic flow does not satisfy condition (8):p
there the growth is of order IQ I P. This will be one of the main difficulties in
the study of the p-harmonic flow.

2.1. - Energy estimate

Now we establish an energy estimate for strong solutions of the p-harmonic
flow. Notice that this lemma is true without the conformality assumption
dim(M) = p.

LEMMA 2. Let f E C~(Mx[0, T], N) be a solution to the p-harmonic flow (6).
Then the following energy equality holds for all tl, t2 with 0 s tl  t2  T:

PROOF.
STEP 1. We multiply (6) by at f . Since at f E T f N the right hand side

vanishes.

STEP 2. On the left hand side we use

The divergence term vanishes if we integrate over M. Integrating over the time
interval [tl, t2] we get

and hence the desired result.
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2.2. - L2P-estimate for ~ f

We start with a variant of the Gagliardo-Nirenberg estimate. Notice that
from now on we assume p = dim(M).

LEMMA 3. Let M be a Riemannian manifold of dimension m = p and t the
injectivity radius of M. Then there exist constants c &#x3E; 0 and Ro E]O, i] only
depending on M, N, such that for any measurable function f : M x [0, T ] -~
N (T &#x3E; 0 arbitrary), any BR (x) C M with R EIO, Ro] and any function qJ E
L °° ( BR (x ) ) depending only on the distance from x, i. e. =- and

non-increasing as a function of this distance, the estimate

holds, provided cp = 1 on B R/2 (x).
REMARK. Here, BR (x) denotes the geodesic ball in M around x with

radius R, i.e. BR(x) = {y E M : distm(x, y)  RI, where distm(x, y) means
the geodesic distance of x, y E M with respect to the given metric y on the
manifold M.

PROOF. (i) Suppose first that cp - 1 and assume that the right hand side
of (11) is finite. Let g E H 1 ~ 2 (BR (x) ) be a function with vanishing mean value

0. Then we infer from ([44] Chap. 2, § 2, Theorem 2.2)

We apply (12) to the function g = ~ with

We get
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The various terms on the right hand side of (13) are estimated in the following
way:

Plugging in the estimates (14)-(16) into (13) the assertion for cp = 1 follows.

(ii) By linearity and (i) the assertion remains true for step functions cp which are
non-increasing in radial distance and which satisfy ~o = 1 on BR~2 (x ) . Finally,
the general case follows by density of the step functions in in
measure. D

Now we try to carry over Choe’s results for p-Laplace-systems in [8] to

the case of natural growth in the inhomogeneity. To do this we need to control
the local energy:

DEFINITION 4. We denote by

the local energy of the function f ( ~ , t) : M -~ N in the geodesic ball
M.

Given some uniform control of the local energy, we can estimate the 2p-
norm of the gradient and higher derivatives.
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LEMMA 5. Let t denote the injectivity radius of the manifold M. If m =
dim(M) = p then there exists 81 &#x3E; 0 which only depends on M and N with the
following property:

If f E c2(B3R(Y) x [0, T [; N) with E( f (t))  Eo is a solution of the m-
harmonic flow (6) on B3R (y) x [0, T[for some R (=-10, -L [ and if

then we have for every x E BR (Y)

and

for some constant c which only depends on the manifolds M and N.

PROOF. For simplicity we consider the case of a flat torus M = (For
a general manifold terms involving the metric of M and its derivative occur.)
Let cp e be a cutoff function satisfying 0 : w s 1, - 1

and I  i. The equation of the p-harmonic flow which takes the form

is now tested by the function Using the explicit form of
the right hand side in (6) we get

with a constant c only depending on N. For brevity let Q = B2R(y) x [0, T [.
Integrating over Q we obtain
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In the last step we used (20) and then equation (6) to substitute ft by 
By Young’s inequality we can estimate the last line in (21) by

By integrating by parts twice, exchanging derivatives and rearranging the re-
sulting terms we find that for arbitrary functions f E C2 ( Q; N) there holds

for a constant c. Putting (21)-(23) together we obtain

The second term on the right hand side of (24) may be estimated separately
by H61der’s and Young’s inequality:

Hence, from (24) and (25) it follows

From Lemma 3 we infer
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Hence, for 81 1 &#x3E; 0 small enough, the condition

used in (27) and in (26) implies the estimate (17) and by applying Lemma 3
once again, we get (18). D

2.3. - Higher integrability

In order to describe how much the energy is concentrated we will use the

following quantity:
DEFINITION 6. For a function

where t denotes the injectivity radius of M.

LEMMA 7. Let q E]2p, oo[ be a given constant. If dim(M) = p then there
exists a constant E2 &#x3E; 0 only depending on M, N and q with the following property:

For any solution f E C2(M x [0, T [; N) of the m-harmonic flow (6) with
R* = R* (E2, f, M x [0, T [) &#x3E; 0 and any open set Q C C M x ]0, T [ there exists
a constant C which only depends on p, q, M, N, T, Eo, R* and dist(Q, M x {OJ)
such that 

Eo denotes the initial energy Eo = E (f ( . , 0)).

REMARK. It seems very inconvenient that ~2 may not be chosen indepen-
dently of the level q of integrability we want to reach. We will obtain a better
result below which uses the assertion of this lemma in a technical way.

PROOF. For simplicity we consider the case M = JRm /zm . Again we
write (6) in the form

Let us first fix a few notations: For (xo, to) E M x ] 0, T [ let
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For R small enough such that QR c Mx]0, T[ we take a cutoff function ~
with

in a neighborhood of the parabolic boundary of Q R

and with

We now and a to be chosen later, as a

testfunction in equation (28). This gives rise to the following calculations:
(i) The first term on the left gives

(ii) For the second term on the left we observe that

In order not to lose control on the various terms we proceed here in two
steps.
(a) First we get

(b) Second we find
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(iii) On the right hand side we finally get

In the calculation (iii) of the right hand side of (30) we used the fact that
E T f N. Putting all the terms (i)-(iii) together and taking the supremum

over the time interval ] to - (1 - to[ we get by using the fact that the
positive terms are non-decreasing in t

Two terms on the right hand side of the inequality (31 ) need to be interpolated
by the binomic inequality
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Thus, choosing the constants 8 and 3 in (32) and (33) appropriately, e.g. E =
~_~ and 8 = ~, and absorbing the resulting terms we obtain from (31)

Since we trivially have

it follows from (34)

Now, for every fixed time t Hblder’s inequality implies
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where 2* = 2p So, we may split off a suitable factor in the last term on the
right hand side of (35)

Using the Poincar6-Sobolev inequality
estimate the last term on the left of inequality (36) we see that we may absorb
the last term of the right hand side provided the quantity

is smaller than a suitable constant E2 &#x3E; 0 which only depends on absolute data
and the level q  o0 of integrability that we want to reach (it is enough to
choose E2 such that k2p-4), and £2  £1 which allows to use the result2 - 

(q+2)
of Lemma 5 later). In this way we get from (36)

Now, by Holder’s inequality and a further elementary inequality we observe



608

that for every À, y &#x3E; 0 there holds

Choosing tl
y such that

and the constants k and

and

we get from (37) together with (38) and (29) that

where the constant C in (39) may be expressed by means of the constants a, or,,
a2, R, p, k. Now, the assertion follows by iteration and a covering argument.
The iteration starts e.g. with a = p/2 and the a priori estimate of Lemma 5
(we should not start with a = 0 since we used a &#x3E; 0 in the calculations of the

proof). We stop the iteration as soon as -E- p (a + 1) &#x3E; ~. It is easy to

check that our choice of ~2 remains valid during the iteration process. D

2.4. - L 00 -estimate for ~ f

The next step is to find local a priori estimates for by a Moser
iteration technique (see [50] and [51]). H. Choe used similar arguments in [8]
to handle the case of systems of type (7). We start once again from the
estimate (35) but this time the iteration is arranged in quite a different way.

LEMMA 8. Let ao &#x3E; p be an arbitrary constant, dim(M) = p, f E C2(M x
[0, T [; N) a solution of the m -harmonic flow (6) and QR C M x ]0, T [. Then there
exists a constant C which only depends on p, ao, R, M and N with the property that
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PROOF. By the Holder and the Sobolev inequality we have

Using (35) we conclude

for a new constant c which does not depend on a (we assume that a
Observing (29) estimate (41) simplifies to

Now, for every v E N we put
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in (42) and get after some elementary manipulations

In order to iterate (43) we define

We see that with

and hence that

Thus, a, - oo as v oo provided ao &#x3E; p. Moreover we have a" -
p) -E- 2 - 1 such that we obtain from (43)

with Now we use once more the fact 2 and

hence that for all x &#x3E; 0. Defining

(44) thus implies for v E No

Using (45) we can easily prove by induction that

with L = 4K + 16 and a sequence b, satisfying
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For b" we find explicitly:

Now we see that for v - o0

and

This implies

As a corollary of the Lemmas 7 and 8 we have

LEMMA 9. If dim(M) = p then there exists a constant 83 &#x3E; 0 only depending
on M and N with the following property:

For any solution f E C2 (M x [0, T [; N) of the m-harmonic flow (6) with
R* = R* (E3, f, M x [0, T [) &#x3E; 0 and any open set S2 C C M x ]0, T [ there exists a
constant C which only depends on p, Eo, M, N, R* and dist(Q, M x {O}) such that

Eo = E ( f ( . , 0)) again denotes the initial energy.

2.5. - Energy concentration

In the theory of the harmonic flow an energy concentration theorem plays
a fundamental role (see Struwe [58]). A modified form of this theorem also
holds in the case p &#x3E; 2. It shows that the local energy cannot concentrate
too fast.

THEOREM 1. If dim(M) = p and f E C2(M x [o, oo[; N) is a solution of the
m-harmonic flow (6) then there exist constants c, so &#x3E; 0 which only depend on the
geometry of the manifolds M and N, and there exists a time To &#x3E; 0 which depends in
addition on Eo and R*(so, f, M x {OJ), with the following properties: If the initial
local energy satisfies

then it follows

for all (x, t) E M x [0, To]. Here Eo denotes the initial energy Eo = E (f ( . , 0)).
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PROOF. We make the same assumptions on M as in the proof of Lemma 7.
We choose a testfunction w E cÜ(B2R(X» which satisfies

where x is an arbitrary point in M and 4R  t (t the injectivity radius of M).
Then we test

by the testfunction and obtain

Thus,

This implies

The second term on the right hand side of (48) may be estimated by Young’s
inequality by the first term and

In this way we get from (48)
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using Hblder’s inequality in the last step. Now, there exists a number L only
depending on the geometry of M but not on R such that every ball B2R (x)
may be covered by at most L balls Now remember that in Lemma 5
we found a constant 81 1 &#x3E; 0 with the property that

Now we choose and suppose that Ro  4 is such that sup E (f (0),4L 4 
xEM

so. Then we choose To as

Now we claim: For all (x, t) E M x [0, To] and all R  Ro there hold

and

To see this let T  To such that for t E [0, T] (i) and (ii) hold. Then it follows
from (49) and (50) together with (ii) that

due to the special choice of Eo, Ro and To. Thus, (ii) and consequently (i) hold
on some larger interval [0, T + 3]. On the other hand the interval where (i)
and (ii) hold is closed and nonempty. Hence, (i) and (ii) hold on [0, To].
Using (i) in the formula (49) the assertion follows after a short calculation with
a new constant c. D
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3. - Existence results

In order to prove existence results for problem (6) we encounter two main
difficulties:

(1) We have to assure that the image of f remains contained in N for all
time: 

(2) The p-Laplace operator is degenerate for p &#x3E; 2.

In [5] existence for the p-harmonic flow is established for N = Sn . Due
to the special geometry of the sphere the first difficulty may be handled by the
"penalty trick". In case p = 2 the same technique has been applied successfully
for general N (see Chen-Struwe [6]). For p &#x3E; 2 this does not seem to work

any more. Thus, we will try to solve the problem with Hamilton’s technique
of a totally geodesic embedding of N in R k (see [35]).

The second difficulty will be attacked by regularising the p-energy (see
Section 3.2 below). We will then apply the theory of analytic semigroups to
the corresponding regularised operator. Due to the a priori estimates of Section 2
it will be possible to pass to the limit E - 0.

3.1. - Totally geodesic embedding of N in R k

In a first step we will work with a special embedding of N in 
We equip with a metric h such that

1. N is embedded isometrically, i.e. the metric g on N equals the metric
induced by h.

2. The metric h equals the Euclidean metric outside a large ball B.

3. There exists an involutive isometry t : T -+ T on a tubular neighborhood
T of N corresponding to multiplication by -1 in the orthonormal fibers
of N and having precisely N for its fixed point set.

Such an embedding is called totally geodesic: The h-geodesic curve y
connecting x, y E N (x, y close enough) will always be contained in N. This
follows from the (local) uniqueness of geodesics and the fact that with y the
curve l 0 y is another geodesic joining x and y.

A totally geodesic embedding can be accomplished as follows: We start
with the standard Nash-embedding of N c IRk and choose a tubular neighbor-
hood T of N: dist(x, N)  281 (8 small enough and
dist the Euclidean distance). Then we choose locally in N x ] - 2~, 2S [k-n the
metric hi~ - gi~ ® ~~~ (or like Hamilton in [35] we just take the average of
any extension of g under the action of t). Then we smooth out h by taking a
positive C°° function 1/1’ with support in T28 and 1/1’ --- 1 on Ts and by defining
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3.2. - The regularised p-energy

DEFINITION 10. For 8 &#x3E; 0 the regdlarised p-energy density of a C 1-mapping

and the regularised p-energy of f is

where the norm ~ ~ ~ and the measure J1- are associated with the given Riemannian
metrics on M and N.

For the heat flow of E8 we find the equation

where in local coordinates

(g and y are the metrics of N and M respectively, rfj denote the Christoffel
symbols related to g). It will be necessary below to attach the related target-
manifold in the notation; we will write or for that.

The extrinsic form of this equation which we use if N is isometrically
embedded in the Euclidean space R k is

where in local coordinates

3.3. - The flow of the regularised p-energy

Let us first state a theorem of A. Lunardi (see [48]). We will use a version
which was formulated by V. Vespri in [65].
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THEOREM 2. Consider the following Cauchy problem in a Banach space X

where 1/1 is a C2 function from Y to X, Y is a continuously embedded subspace
of X and fo E Y. Assume that the linear operator D1/1(fo) : Y -~ X generates
an analytic semigroup in X and 1/1(fo) E Y then there exists a strict solution f
(in the sense of Lunardi [48]) of (54) on a time interval [0, -r], r &#x3E; 0, and f E
C1 ([o, -c ], X) f1 cO ([o, r ], Y). Moreover f is unique.

Now we will apply Lunardi’s theorem to the regularised flow. To do this,
consider a totally geodesic embedding of N in (R k, h) and the regularised p-
Laplace operator h~ p : Y - X with X = cO,a(M, and Y = 

for some a &#x3E; 0 (the fact that maps Y in X is checked directly in the
definition (52)). Y is continuously embedded in X. Now, by expanding 
k) we find the first derivative of the regularised p-Laplace operator: 

Here upper indices denote components whereas ,a means It is not difficult

to check that for fn - f in Y we have -+ in L(Y, X)
and hence that the mapping is continuous. Analogously we
find that has a continuous second derivative. The important facts about the
operator for fo E Y are

(1) The coefficients of are of class Co,’ (M).

(2) For 8 &#x3E; 0 the operator is elliptic in the sense that the main
part satisfies a uniform strong Legendre-condition.

(1) is obvious. (2) can be checked in case of the Euclidean metric hij(zo) = Bij
directly from the definition: Then the main part of in xo is
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such that we get for an arbitrary vector $) and a uniform constant v &#x3E; 0

depending on the geometry of M

where (’, ’) denotes the inner product induced by y.
For a general metric h we use the observation that the main part of

depends only on the metric h but not on its derivatives. For
the Euclidean metric hij = 3ij the required ellipticity is treated above. Then

ellipticity follows at least for metrics h which are close enough to the Euclidean
metric. But we can choose h as close as we want to the Euclidean metric by
choosing the 8-neighborhood of N in the construction of the totally geodesic
embedding small (compare Section 3.1).

As Vespri has shown in [65] the conditions (1) and (2) guarantee that
Y ~ X generates an analytic semigroup in X. In fact, Vespri

showed that under these conditions there exist constants C, cv &#x3E; 0 such that
for all w E X and every complex number X satisfying Re(À) &#x3E; w there exists
a solution u E Y of 

, ,

with

Now, Lunardi’s theorem yields existence of a unique local solution f E
CO([O, -C], c2,a(M» fl c1([0, -ri, CO’O!(M» of (51) with initial data fo E Y.
Furthermore we have

THEOREM 3. If lm(fo) C N, then t)) C N for all t E [0, -C
PROOF. Let c still denote the involutive isometry on the tubular neighborhood

T of N c R k defined in Section 3.1. We proceed by contradiction. If the image
of f does not always remain in N, we can restrict ourselves to a smaller interval
M x [0, r’], t, such that the image of f does not always remain in N
but in the tubular neighborhood T of N. Since t : T - T is an isometry, the
composition is another solution of (51). Since i is the identity on N this
solution has the same initial value as f, so by the uniqueness of the solution
we have l 0 f = f. This shows that the image of f must remain in the fixed
point set N of t. D

THEOREM 4. If (N, g) is a totally geodesic embedded submanifold of h)
and f : M --~ N C then 9AE f = 

PROOF. We refer to Hamilton [35], Section 4.5, page 108. The proof there
is given for p = 2 and E = 0, but it carries over to our situation. D

Thus, according to Theorem 3 we find that for initial data fo : M - N,
fo E Y, the solution f of (51) we found above satisfies f (M) c N for all
t E [0, t] and is, by applying Theorem 4, a solution of (53) with initial data fo.
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Notice that since we have constructed the local solution for the
existence interval [0, -r(s)] might depend So, we will have to show that

fr 0 as s - 0.

3.4. - An e-independent existence interval

First we formulate the a priori estimates of Section 2 for solutions of the
heat flow of the energy Eg.

c1([0, -rl, cO,a(M», be a solution of (53) with initial value fo. We assume that
8  1. Then the following is true if p = m = dim M:

(ii) There exist constants C, so &#x3E; 0, only depending on M and N (but not on sand
fo), and To &#x3E; 0 depending in addition on El ( fo) and R*(so, f, M x {OJ), such
that the condition

implies

for all (x, t) E M x [0, minit, To}].
(iii) There exists a constant 81 1 &#x3E; 0 only depending on M and N (but not on 8 and

fo) such that

implies for every S2 C M x [0, 1:] with dist(Q, M x [01) = J1 &#x3E; 0

where C is a constant that depends on p, El ( fo), M, N, R* and J1.
(iv) For the same constant 81 as in (i i i ) we have that

implies

where C is a constant that depends on p, M, N, R* and the Loo-norm of the
initial 
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PROOF.

(i)-(iii): We obtain these assertions by repeating the corresponding proofs
of Section 2. Notice however that the regularised energy Es is not conformally
invariant, so every argument based on this fact would break down.

(iv) Here we repeat the three steps of Section 2.2-2.4: We obtain the
L2p-estimate for V f as in Section 2.2 by testing the equation by 

Using the L2p-estimate for o f we get the Lq-estimates for q  oo as

in Section 2.3 by an iteration argument: In order to obtain the estimate up to
t = 0 we have to choose the cutoff function ~ independent of t, i.e. a2 = 0 (in
the notation of Section 2.3). Using the testfunction

(with v in (53) we find after some calculation the analogue of (37)

The iteration yields

where C now depends on the initial datum (ao denotes the
initial value of the iteration).

Finally as in Section 2.4 we use a Moser-iteration to get the L°°-bound for
V f. Using the same testfunction as in the last step, we obtain the analogue
of (41)

Iteration yields

where C now depends on the initial datum
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Now we combine (ii) and (iv): Let

Hence, R is a radius with the property

Then (ii) implies that for all t  T*,

the hypothesis of (iv) and hence the conclusion holds:

for t  min{-r, r*} with a constant depending on M, N, p, and R.

Now, for the solution f : M x [0, r] -+ N of (53) constructed in Section 3.3
we define B : M
is a solution of

Then f

and the results of DiBenedetto [12] apply: We have that 
and the operators satisfy the structural conditions of [12],

Section 4.1 (ii) (notice that B(x, t) does not depend on V f). Then we infer
from [12], Section 9.1, that V/ is Holder continuous: there is a Holder exponent
a &#x3E; 0, independent of E and t , with

(see also [12], Section 8.1, p. 216).
Combining (57) with the classical results in [44] we obtain for T*~

where C depends on fo and also on the modulus of ellipticity E.
Now we can prove that [0, T*(fo)] is the existence interval for the solution

of the heat flow of the energy E, independent of 8 by "continuous induction":
Let

a solution of (53) on [0, t ] with

and initial value fo} .

Then the interval I is not empty (according to Section 3.3). But I is also open:
If t E I , then we can extend the solution beyond t by solving the flow with
initial value f (t) which is possible as we have seen in Section 3.3. On the
other hand by our time independent bounds for the quantities 

and on [0, T*] the interval I is also closed and
hence I = [0, T*]. 

’
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Thus, we have

THEOREM 6. For p = m = dim M there exists a constant E2 &#x3E; 0 depending on
M and N with the following property:

For arbitrary fo : M ~ N C Jaek, fo E C2~" (M) there exists a time T* &#x3E; 0

only depending on E( f°), R*(82, fO, M x {OJ) and the geometry of M and N
such that for every 8 E]O, 1] there exists a solution f E cO([O, T*], c2,a (M)) n
C 1 ([0, T*], cO,a (M» of (53) with initial value fo. Moreover there exist 8-indepen-
dent bounds for the following quantities:

Of course the constants C also depend on p, M and N. The constant a depends on
a and 

Combining Theorem 5 (iii) with DiBenedetto’s result in [12], Theorem 1.1’,
Chapter IX, we obtain also

THEOREM 7. For the solution f from Theorem 6 we have for every open S2 C
M x [0, T*] with dist(Q, M x {OJ) = J1 &#x3E; 0

for some constants C (depending on p, El (fo), M, N, R*(S2, fo, M x JOI) and ~,c)
and f3 e]0,1[ (depending on p, M and N).

3.5. - The limit e ~ 0

Let f, denote the solution of the heat flow of the energy E, (with initial
value fo) on the time interval [0, T*], that we have constructed in the previous
section. The aim is to pass in the distributional form of (53) on [0, T*] to the
limit. Due to the s-independent bounds given in Theorem 6 we know at least
that is bounded in x [0, T*], N). Thus, we can choose a
sequence Ek - 0 such that

weakly in

But by the bound for the of Vf, we can pass to a subsequence if
necessary, and obtain (observing that x [0, T*]) C x [0, T*])
compactly) that

strongly in
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Now, for a Co testfunction w we can pass to the limit Ek --&#x3E;’ 0 in

Thus, we have the following
THEOREM 8. For p = m = dim M there exits a constant E2 &#x3E; 0 depending on

M and N with the following property:
For arbitrary fo : M --~ N C fo E c2,a(M) there exists a time T* &#x3E; 0

only depending on E ( fo), R* (~2, fo, M x {OJ) and the geometry of M and N, and
a local weak solution f : M x [0, T*] --+ N of

f satisfies the energy inequality. Furthermore II  
and  The constants C also depend on p,
M and N. Locally, for every open S2 c M x [0, T*] with dist(Q, M x {0{) -
J1 &#x3E; 0, there holds I) 0 f  C for some constants C (depending on p,
E( fo), M, N, R*(E2, fo, M x {OJ) and ~) and f3 E]O, 1[ (depending on p, M
and N).

For small initial data, i. e. 81, the existence is global (81 is the
constant from Theorem 5).

PROOF. We have already seen that f is a weak solution of the flow on

[0, T*]. The energy inequality follows in the limit 8 - 0 from Theorem 5 (i)
and the bounds for and from Theorem 6.
The local bound for follows from Theorem 7. 0

3.6. - Short Time existence for non-smooth initial data

We can now prove short time existence for a wider class of initial values:

THEOREM 9. For p = m = dim M there exits a constant 82 &#x3E; 0 depending on
M and N with the following property:

For given initial value fo E N) there exists a time T* &#x3E; 0 only
depending on E(fo), R*(82, 10, M x {OJ) and the geometry of M and N, and a
weak solution f : M x [0, T*] -+ N of
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f satisfies the energy inequality. Locally, for every open Q C M x [0, T*] with
dist(Q, M x {OJ) = J1 &#x3E; 0, there holds S C for some constants
C (depending on p, E( fo), M, N, R*(82, fo, M x {OJ) and and p E]o, 1[
(depending on p, M and N).

For small initial data, i.e. if S 81, the existence is global.
PROOF. From Bethuel-Zheng [2] we infer that C°° (M, N) is dense in

W1,P(M, N). Hence, we can approximate the given fo by smooth functions:
there exists a sequence in C°° (M, N) such that qJn - fo in N).
Let fn denote the solution of

Notice that for every E &#x3E; 0 there exists a radius R &#x3E; 0 such that
E N. According to the construction

of the time T * in Section 3.4 there exists an existence interval [0, T*],
T * &#x3E; 0, valid for every solution fn. Using the energy inequality of
Theorem 8 for the solutions fn we find a subsequence (still denoted by fn)
such that

and

The local estimate on for t &#x3E; 0 also from Theorem 8

implies (after passing to another subsequence) that

strongly in

Choosing t = T* we obtain, by iterated extraction of subsequences and passing
to the diagonal sequence, that

for all t &#x3E; 0. This allows to go to the limit n --~ oo in the weak form of the

equation for fn.
The energy inequality and the local estimate for

follow in the limit.

3.7. - Global existence and partial regularity

Once we have established local existence for initial data in w1,m(M, N),
we can try to extend the local solution beyond an occurring singularity. It will
be possible to find an a priori bound for the number of singular times which
enables us to obtain global existence by repeating the extension finitely many
times.
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THEOREM 10. For given initial value fo E w1,m (M, N) there exists a weak
solution f : M x [0, oo[--+ N of the m-harmonic flow

f satisfies the energy inequality and is in weakly continuous in time.
There exists a = X { Tk }, Ek C M, 0  Tk  oo, such that on every
open set S2 C M x [0, oo[ with dist(Q, (M x {OJ) U ~) - J1 &#x3E; 0 there holds

~~ ~ f ~~ cO,fJ (Q) S C for some constants C (depending on m, E ( fo), M, N and tt) and
f3 E]O, 1 [ (depending on m, M and N). The number K of singular times is a priori
bounded by K  1 E ( fo) and the singular points (x, Tk) are characterized by the
condition limSUPt/,Tk E( f (t), 81 for any R &#x3E; 0. At every singular time
Tk the decrease of the m-energy is at least El:

PROOF. We can extend the local solution of the last section, which is defined
on [0, T*], to a maximal interval [0, Tl [ where T, is characterized by

(i) ~ f E Tl [),
(ii) there exists x E M such that lim sup, Z T, E ( f (t ) , I for any

R&#x3E;0.

In fact, if f is a solution on I = [0, t[ or I = [0, t] such that o f E
C °’ ~ (M x I ) and for all x E M there exists R &#x3E; 0 with lim sup, E(fC’r), BR (x ) )
S 81, then there holds R * = R * (E 1, f, M x 1 ) &#x3E; 0. According to the construction
in Section 3.4 we set

n

and can then find a solution of the m-harmonic flow with initial value f ( , t -
on the time interval [t - 2* , t + 2* ]. (This extension of the solution is

unique as we will see in the next Chapter.)
Now, the energy inequality implies that

In fact, since ft E L2 (M x [0, Tl [) we have that ft(x, .) E L 2 (0, Tl [) for

a.e. x E M, and hence we can write f (x, Tl ) = f (x, 0) for
almost all x E M and f (x , t ) ~ f (x , Tl ) a.e. x E M as t / Tl . On the other
hand, since IIf(., is bounded on [0, Tl [ we have (58) at least for a
sequence tk / Tl. To prove that we have convergence for an arbitrary sequence
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tk / T, we argue as follows: Let 0, Vf E LP (M) be fixed. Then we have for
E C°° (M)

Let some 8 &#x3E; 0 be given. Since f ( ~ , t) is bounded in we can

make the second and the fourth term each smaller than 4 by choosing ~ close
to q5 and ~ close to 1/1 in LP’(M). Then, by choosing t close to T, the first
and the third term become smaller than 4 (this follows by Lebesgue’s theorem).

On the other hand we have seen that at time Tl there exist points X E M
such that

for any R &#x3E; 0. Now for such a point x satisfying (59) and for R &#x3E; 0 let

MR = M B BR (x ) and Eo = Then we have
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From (60) we conclude that we have

for the energy at time Tl.
Now, for any Q C C M x ]0, Tl ] B E x (Ei I the set of singular points,

i.e. the set of points satisfying 59)), there exists a radius R &#x3E; 0 depending on
Q such that

Thus, our solution f on [0, T} [ extends to a solution on M x [0, x { T} }
With Vf E 

In view of (58) we can use f, , Tl ) as new initial value and iterate this
process. Piecing all the resulting solutions together, we obtain a global solution
as asserted. Applying (60) at every occurring singular time Tk we conclude
that we are a priori given an upper bound for the number K of singular times
T1, ... , TK, namely

4. - Uniqueness in the class T; 

In the case p = 2 Struwe proved uniqueness of the harmonic flow on
Riemannian surfaces within the class in which he obtained existence (see Struwe
[58]). In the non-conformal case uniqueness fails to be true as counterexamples
of Coron (for p = 2) and of the author (for p &#x3E; 2) show (see [9] and [39]). In
this section we show that if two solutions of the p-harmonic flow coincide at
time t = 0 they coincide on the time interval [0, T provided the L°°-norm of
the gradients remains bounded during that time. Let us start with a technical
lemma.

LEMMA 11. Let p &#x3E; 2. Then there holds for all a, b E Ii~k

with a constant c &#x3E; 0 which only depends on the inner product.

PROOF. By a suitable rotation and dilatation, the problem reduces to two
dimensions where the verification is elementary. In the case of the standard
inner product the best possible constant is c = 2p . D
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THEOREM 11. Let f l, f2 be weak solutions of

and suppose that for t E [0, T [ there holds
on M x [0, T].

PROOF. We test the difference of the equations for fl and for f2 with the
testfunction v = f 1 - f2 and get

with the shorthand notation 1 V F 1 := I V f, + I V f2 1.
The second term I I on the left hand side of (61) is estimated by

This inequality follows from Lemma 11.
Now we interpolate the term on the right hand side of (62) by using

Young’s inequality for the first term on the right of (61):

Putting all the above inequalities (61 )-(63) together, we get
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Using the assumption IVFI (  C on M x [0, T[ we get from (64)

with a new constant c. The right hand side of (65) is increasing in t and hence
we get

Thus, for t  § we 0 for t’ E [0, t ] . Iteration of the argument proves
the assertion (notice that the constant c remains the same during the iteration
process). D

In the conformal case, we get the following corollary:
COROLLARY 1. Let f f2 be weak solutions of

for initial data fo E with p = dim M. Then f, l = f2 on a time-interval
[0, T] where T depends on Furthermore, there exists 81 1 &#x3E; 0 such
that 

-

implies fl = f2 for 0.

REMARK. It is an open question whether the m-harmonic flow (m &#x3E; 3)
develops singularities in finite time (numerical calculation lend some support to
the conjecture that this is the case).
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