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Twins of conic hexagons

Lorenz Halbeisen and Norbert Hungerbühler

Abstract. Six points on a conic section define 60 different hexagons and
therefore 60 Pascal lines. Each Pascal line passes through three of the
45 intersections of connecting lines of the six given points. Instead of
searching for collinear triples (Pascal lines) among these 45 points, we
identify and classify all six-tuples among the 45 points that lie on a conic
section. These six-tuples will be called Pascal twins of the given six points.
It turns out that there are also six-tuples that lie on a conic section that
have two points in common with the given six points. These six-tuples
are called Siamese Pascal twins for evident reasons.
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1. Introduction

One of the most fundamental theorems of projective geometry is Pascal’s Hexa-
gon Theorem. The result is often referred to as the Hexagrammum Mysticum
Theorem. It states the following. Let P1, P2, . . . , P6 be arbitrary points on a
non-degenerate conic C and σ a permutation of the set {1, 2, . . . , 6}. Then
the three pairs of opposite sides of the conic hexagon Pσ(1), Pσ(2), . . . , Pσ(6)

(extended if necessary) meet at three points that lie on a straight line, called
the Pascal line of the hexagon. Modulo cyclic renumbering of the points or
reversal of the order, there are 6!

6·2 = 60 different hexagons. In general, the 60
resulting Pascal lines are different from each other. The Swiss mathematician
Jakob Steiner found that these Pascal lines concur in threes in 20 points, which
we today call Steiner nodes. Two decades after Steiner’s discovery, Thomas
Kirkman announced that the Pascal lines also concur in threes at 60 more
points, now known as the Kirkman nodes. This is only the beginning of a
cascade of further incidences: Three of the Kirkman nodes and one Steiner
node lie on one of 20 Cayley lines. The Steiner nodes lie in fours on 15 Plücker
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lines. Four Cayley lines concur in one of 15 Salmon nodes. We refer to [2] for
a wonderful presentation of all these incidences.

Six pairwise distinct points P1, P2, . . . , P6 on a non-degenerate conic C, called
a conic hexa-set, define

(
6
2

)
= 15 lines which in turn yield, in general, 45 inter-

section points different from the points Pi. The intersection of the lines PiPj

and PkPl will be denoted by Pijkl. Let S be the set of these 45 points Pijkl.
Instead of chasing collinear points among the points in S, like Pascal did, we
ask in this article, if there are six points in S that lie on a non-degenerate
conic. Such a hexagon with vertices in S will be called a Pascal twin of the
original hexagon with vertices Pi (see Figs. 1, 2, 3 and 4). A hexagon with
k ≥ 1 vertices among the points P1, P2, . . . , P6 and 6 − k vertices in S will
be called a Siamese Pascal twin of the original hexagon with vertices Pi (see
Figs. 5, 6, 7 and 8).

We will use a rational model to computationally detect and classify Pascal
twins and Siamese Pascal twins. These incidence relations are then proven in
general by classical methods. The paper is organized as follows. In Sect. 2, we
identify all possible Pascal twins of a conic hexagon. The main result will be
that essentially only four such twins exist. In Sect. 3, we identify all possible
Siamese Pascal twins of a conic hexagon. It will turn out that a Siamese twin
necessarily has exactly two points in common with the original hexagon, and
that again essentially only four such Siamese twins exist. Section 4 will be
devoted to the proofs of the results for the Siamese Pascal twins, and the final
Sect. 5 contains the proofs of the results for the Pascal twins.

2. Candidates for Pascal twins

In order to determine the possible candidates for Pascal twins of a conic
hexagon, we proceed as follows. We chose six different points P1, P2, . . . , P6

with rational coordinates on a non-degenerate conic C in such a way that S
consists of 45 different points, also with rational coordinates. By a computer
search, using exact rational numbers, we check for all

(
45
6

)
possible hexa-sets

of points in S whether they lie on a non-degenerate conic. This results in 255
such conic hexa-sets. However, many of these conic hexa-sets are combinatori-
ally the same in the following sense: Suppose T is a conic hexa-set with points
Pinjnknln (for n = 1, 2, . . . , 6) lying on a conic, where Pinjnknln is the intersec-
tion of the lines PinPjn and Pkn

Pln Let T ′ be another conic hexa-set of points
which is obtained by a permutation σ of the points P1, P2, . . . , P6, i.e., T ′ con-
sists of the points Pσ(in)σ(jn)σ(kn)σ(ln), n = 1, 2, . . . , 6. We will then say, that
T and T ′ are equivalent. The tedious task to identify the equivalence classes
can be delegated to a computer program. One finds exactly four equivalence
classes. The following figures show one representative in each class e1, . . . , e4.
The brown triangles are only for better orientation.
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Figure 1 A Pascal twin representative of equivalence class
e1. From one point Pijkl counterclockwise to the next one,
apply the permutation (123456) to each index

Figure 2 A Pascal twin representative of equivalence class e2

Figure 3 A Pascal twin representative of equivalence class e3
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Figure 4 A Pascal twin representative of equivalence class
e4. Notice that Class e4 is essentially the same as Class e3,
where the points P3 and P4 are identical. In particular, there
are just 5 different points involved

Notice that so far, these are only results for the rational points P1, P2, . . . , P6

which we have initially chosen. In Sect. 5 we will actually prove that these
twins exist for an arbitrary choice of points P1, P2, . . . , P6 on a conic C.

3. Candidates for Siamese Pascal twins

The procedure to identify candidates for Siamese Pascal twins is identical to
the one in the previous section. We start with six rational points P1, P2, . . . , P6

on a conic C and compute the set S of the 45 rational intersection points Pijkl.
Then we fix the points P1, P2, . . . , Pk with k = 1, 2, . . . , 4, and complete them
with all possible combinations of points from S to form a hexa-set. We check
for each resulting hexa-set if it lies on a non-degenerate conic. Notice that we
can restrict the search to k ≤ 4, since a conic is defined by five points. It turns
out that only for k = 2 such Siamese Pascal twins exist, and that modulo
renumbering, again only four equivalence classes f1, . . . , f4 exist. For better
readability we denote the two points which lie on both conics by X and Y ,
and the four remaining points on the original conic are denoted by P1, . . . , P4.
The Figs. 5, 6, 7 and 8 show one representative of each equivalence class.
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Figure 5 A Siamese Pascal twin representative of equiva-
lence class f1

Figure 6 A Siamese Pascal twin representative of equiva-
lence class f2
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Figure 7 A Siamese Pascal twin representative of equiva-
lence class f3

Figure 8 A Siamese Pascal twin representative of equiva-
lence class f4

4. Incidence results for Siamese Pascal twins

As a shorthand notation, we will use P −Q to denote the line joining two points
P and Q, and g ∧h to denote the intersection of two lines g and h. Recall that
Pascal’s Theorem states that six points, numbered 1 , 2 , 3 , 4 , 5 , 6 , lie on
a conic iff the three points

1 − 2 ∧ 4 − 5 , 2 − 3 ∧ 5 − 6 , 3 − 4 ∧ 6 − 1

are collinear. Another useful tool will be Carnot’s Theorem (see [1, no. 396]):
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The six points 1 , . . . , 6 lie on a conic iff the lines
(

1 − 2 ∧ 3 − 4
) − (

4 − 5 ∧ 6 − 1
)

2 − 5

3 − 6

are concurrent. Since Carnot’s Theorem is independent of the enumeration of
six points and since every enumeration of six points P1, . . . , P6 leads to three
lines, we get that these three lines are concurrent iff the six points P1, . . . , P6

lie on a conic. For example, if we enumerate the six points P1, . . . , P6 by
2 , 4 , 6 , 1 , 3 , 5 and define h1 = P4 − P1, h2 = P5 − P2, h3 = P2 − P6,
h4 = P3 − P4, Q1 = h1 ∧ h2, Q2 = h3 ∧ h4, then the six points P1, . . . , P6 lie
on a conic iff the three lines Q1 − Q2, P1 − P6, P5 − P3, are concurrent. For
better readability we denote this as follows, where for simplicity we omit the
circles around the numbers:

P1 P2 P3 P4 P5 P6 Concurrent lines

Enumeration 2 4 6 1 3 5 Q1 − Q2, P1 − P6, P5 − P3

Theorem 1 (Class f1). Let X,Y, P1 . . . , P4 be points in the projective plane,
and PXiY j be the intersection of the lines X −Pi and Y −Pj. Then the points
X,Y, P1, . . . , P4 lie on a conic iff the points X,Y, PX1Y 4, PX3Y 2,
PX2Y 3, PX4Y 1 lie on a conic.

In the following theorems, all conics are assumed to be non-degenerate.

Proof We have to show that X,Y, P1 . . . , P4 lie on a conic iff the points X,Y,
Q1, . . . , Q4 lie on a conic, where Q1 = PX1Y 4, Q2 = PX3Y 2, Q3 = PX2Y 3,
Q4 = PX4Y 1 (see Fig. 9).

Figure 9 Proof of Theorem 1
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By Carnot’s Theorem with respect to the 6 points X,Y, P1 . . . , P4 we obtain:

X Y P1 P2 P3 P4 Concurrent lines

Enumeration 1 4 2 5 6 3 Q3 − Q4, P1 − P2, P3 − P4

Enumeration 1 4 3 6 5 2 Q1 − Q2, P1 − P2, P3 − P4

Furthermore, by Carnot’s Theorem with respect to the 6 points X,Y,Q1 . . . , Q4

we have:

X Y Q1 Q2 Q3 Q4 Concurrent lines

Enumeration 1 4 6 3 2 5 P1 − P2, Q1 − Q2, Q3 − Q4

Enumeration 1 4 5 2 3 6 P3 − P4, Q1 − Q2, Q3 − Q4

This shows that X,Y, P1 . . . , P4 lie on a conic if and only if X,Y,Q1 . . . , Q4 lie
on a conic. �

Theorem 2 (Class f2). Let X,Y, P1 . . . , P4 be points in the projective plane.
Then the points X,Y, P1, . . . , P4 lie on a conic iff the points X,Y, PX134, PX234,
PY 312, PY 412 lie on a conic.

Proof We have to show that X,Y, P1 . . . , P4 lie on a conic iff the points X,Y,
Q1, . . . , Q4 lie on a conic, where Q1 = PX134, Q2 = PX234, Q3 = PY 312,
Q4 = PY 412 (see Fig. 10).

Figure 10 Proof of Theorem 2
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By Carnot’s Theorem with respect to the 6 points X,Y, P1 . . . , P4 we obtain:

X Y P1 P2 P3 P4 Concurrent lines

Enumeration 3 6 5 4 2 1 Q2 − Q4, P3 − P1, X − Y

Furthermore, by Carnot’s Theorem with respect to the 6 points X,Y,Q1 . . . , Q4

we have:

X Y Q1 Q2 Q3 Q4 Concurrent lines

Enumeration 3 6 4 5 1 2 P1 − P3, Q4 − Q2, X − Y

This shows that X,Y, P1 . . . , P4 lie on a conic if and only if X,Y,Q1 . . . , Q4 lie
on a conic. �

Theorem 3 (Class f3). Let X,Y, P1 . . . , P4 be points in the projective plane.
Then the points X,Y, P1, . . . , P4 lie on a conic iff the points X,Y, PY 412, PX312,
PX234, PY 134 lie on a conic.

Proof We have to show that X,Y, P1 . . . , P4 lie on a conic iff the points X,Y,
Q1, . . . , Q4 lie on a conic, where Q1 = PY 134, Q2 = PX234, Q3 = PX312, and
Q4 = PY 412 (see Fig. 11).

Figure 11 Proof of Theorem 3
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Let

S := X − P2 ∧ Y − P4 and T := X − P3 ∧ Y − P1.

By Carnot’s Theorem with respect to the 6 points X,Y, P1 . . . , P4 we obtain:

X Y P1 P2 P3 P4 Concurrent lines

Enumeration 1 4 5 2 6 3 S − T , P2 − P1, P4 − P3

Furthermore, since S = X − Q2 ∧ Y − Q4 and T = X − Q3 ∧ Y − Q1, by
Carnot’s Theorem with respect to the 6 points X,Y,Q1 . . . , Q4 we have:

X Y Q1 Q2 Q3 Q4 Concurrent lines

Enumeration 1 4 5 2 6 3 S − T , Q2 − Q1, Q4 − Q3

Since P2−P1 = Q4−Q3 and P4−P3 = Q2−Q1, this shows that X,Y, P1 . . . , P4

lie on a conic if and only if X,Y,Q1 . . . , Q4 lie on a conic. �

Theorem 4 (Class f4). Let X,Y, P1 . . . , P4 be points in the projective plane.
Then the points X,Y, P1, . . . , P4 lie on a conic iff the points X,Y, PX1Y 4, PX3Y 2,
PX234, PY 134 lie on a conic.

Proof We have to show that X,Y, P1 . . . , P4 lie on a conic iff the points X,Y,
Q1, . . . , Q4 lie on a conic, where Q1 = PX1Y 4, Q2 = PX3Y 2, Q3 = PX234, and
Q4 = PY 134 (see Fig. 12).

Figure 12 Proof of Theorem 4
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By Carnot’s Theorem with respect to the 6 points X,Y, P1 . . . , P4 we obtain:

X Y P1 P2 P3 P4 Concurrent lines

Enumeration 1 4 6 3 2 5 Q2 − Q1, P3 − P4, P2 − P1

Furthermore, by Carnot’s Theorem with respect to the 6 points X,Y,Q1 . . . , Q4

we have:

X Y Q1 Q2 Q3 Q4 Concurrent lines

Enumeration 1 4 2 5 6 3 P1 − P2, Q1 − Q2, Q4 − Q3

Since P3 − P4 = Q4 − Q3, this shows that X,Y, P1 . . . , P4 lie on a conic if and
only if X,Y,Q1 . . . , Q4 lie on a conic. �

5. Incidence results for Pascal twins

We start with the proof for the Class e1. This proof is again based on a multiple
nested application of the theorems of Pascal and Carnot.

Theorem 5 (Class e1). Let P1, P2, . . . , P6 be points in the projective plane, and
let Pijkl be the intersection of the lines Pi − Pj and Pk − Pl. Then the points
P1, P2, . . . , P6 lie on a conic iff the points P1426, P2531, P3642, P4153, P5264, P6315

lie on a conic. The two hexa-sets P1, P2, . . . , P6 and P1426, P2531, P3642, P4153,
P5264, P6315, share two common Pascal lines.

Proof We have to show that P1, . . . , P6 lie on a conic iff the points Q1, . . . , Q6

lie on a conic, where Q1 = P1426, Q2 = P2531, Q3 = P3642, Q4 = P4153,
Q5 = P5264, Q6 = P6315 (see Fig. 13).

Figure 13 Proof of Theorem 5
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By Pascal’s Theorem with respect to the 6 points P1 . . . , P6 we obtain:

P1 P2 P3 P4 P5 P6 Collinear points

Enumeration 3 6 1 4 5 2

⎧
⎪⎨

⎪⎩

P3 − P6 ∧ P4 − P5 =: R

P6 − P1 ∧ P5 − P2 =: S

P1 − P4 ∧ P2 − P3 =: T

In particular, the three points R,S and T lie on a Pascal line of the hexa-set
P1, . . . , P6.

Furthermore, by Carnot’s Theorem with respect to the 6 points P1 . . . , P6 we
obtain:

P1 P2 P3 P4 P5 P6 Concurrent lines

Enumeration 1 4 6 2 5 3 Q1 − Q2, P4 − P5, P6 − P3︸ ︷︷ ︸
meet in R

Enumeration 2 6 4 1 3 5 Q4 − Q3, P1 − P6, P5 − P2︸ ︷︷ ︸
meet in S

Enumeration 2 6 3 5 1 4 Q6 − Q5, P1 − P4, P3 − P2︸ ︷︷ ︸
meet in T

Finally, by Pascal’s Theorem with respect to the 6 points Q1 . . . , Q6 we obtain:

Q1 Q2 Q3 Q4 Q5 Q6 Collinear points

Enumeration 1 2 5 6 3 4

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 − Q2 ∧
=P6−P3︷ ︸︸ ︷
Q6 − Q3︸ ︷︷ ︸

=R
=P2−P5︷ ︸︸ ︷
Q2 − Q5 ∧ Q3 − Q4︸ ︷︷ ︸

=S

Q5 − Q6 ∧
=P4−P1︷ ︸︸ ︷
Q4 − Q1︸ ︷︷ ︸

=T

This shows that the hexagon P3P6P1P4P5P2 (in this order) lies on a conic with
Pascal line R − S − T iff the hexagon Q1Q2Q5Q6Q3Q4 (in this order) lies on
a conic with the same Pascal line.

In order to find the second common Pascal line of the two conics, we proceed
as follows: By Pascal’s Theorem with respect to the 6 points P1 . . . , P6 we
obtain:
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P1 P2 P3 P4 P5 P6 Collinear points

Enumeration 2 5 6 3 4 1

⎧
⎪⎨

⎪⎩

P2 − P5 ∧ P3 − P4 =: R′

P5 − P6 ∧ P4 − P1 =: S′

P6 − P3 ∧ P1 − P2 =: T ′

Furthermore, by Carnot’s Theorem with respect to the 6 points P1 . . . , P6 we
obtain:

P1 P2 P3 P4 P5 P6 Concurrent lines

Enumeration 6 3 5 1 4 2 Q6 − Q1, P3 − P4, P5 − P2︸ ︷︷ ︸
meet in R′

Enumeration 2 5 1 3 6 4 Q2 − Q3, P5 − P6, P1 − P4︸ ︷︷ ︸
meet in S′

Enumeration 4 1 3 5 2 6 Q4 − Q5, P1 − P2, P3 − P6︸ ︷︷ ︸
meet in T ′

Finally, by Pascal’s Theorem with respect to the 6 points Q1 . . . , Q6 we obtain:

Q1 Q2 Q3 Q4 Q5 Q6 Collinear points

Enumeration 6 1 4 5 2 3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q6 − Q1 ∧
=P5−P2︷ ︸︸ ︷
Q5 − Q2︸ ︷︷ ︸

=R′
=P1−P4︷ ︸︸ ︷
Q1 − Q4 ∧ Q2 − Q3︸ ︷︷ ︸

=S′

Q4 − Q5 ∧
=P3−P6︷ ︸︸ ︷
Q3 − Q6︸ ︷︷ ︸

=T ′

This shows that the conic hexagon P2P5P6P3P4P1 has the same Pascal line
R′ − S′ − T ′ as the conic hexagon Q6Q1Q4Q5Q2Q3. �

Remark By a computer search, we found that the Siamese Pascal twins in the
Classes f1, f2, f3 and f4 share 4, 6, 3 and 3 Pascal lines. In the Class f2, 4 of
the 6 common Pascal lines meet at the point P1234. The Pascal twins in the
Classes e2, e3, e4 have no common Pascal line.

Before we consider the Classes e2, e3 and e4, we prove two auxiliary results.
The first one is a quantified version of Pascal’s Theorem:
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Figure 14 Equality of the cross ratios (X,Y,A,B) = (X,Y,
A′, B′) in the proof of Lemma 6

Lemma 6 Let P1, P2, P3, P4,X, Y be points on a conic, and let � = X − Y . If
A = P1 − P2 ∧ �, B = P1 − P4 ∧ �, A′ = P3 − P2 ∧ �, and B′ = P3 − P4 ∧ �,
then the cross ratios (X,Y,A,B) and (X,Y,A′, B′) are equal. Conversely, if
(X,Y ′, A,B) = (X,Y ′, A′, B′) for some Y ′ on �, then either Y ′ = X or Y ′ =
Y .

Proof By a projective transformation we may assume that P1P2P3P3 is a rec-
tangle and X a point on its circumcircle C (see [3, proof of Satz 7.10]). Now,
observe that the set of the four blue lines P1P2, P1−X,P1−P4, P1−Y in Fig. 14
is congruent to the set of the four green lines P3 −P2, P3 −X,P3 −P4, P3 −Y .
For example, the angles �Y P1P4 and �Y P3P4 agree as angles over the same
arc
>
Y P4 on the circle C. The first set of lines intersects the line � in the points

A,X,B, Y , the second set of lines intersects the line � in the points A′,X,B′Y .
Hence the corresponding cross ratios agree.

Conversely, using the definition of the cross ratio, a short calculation shows that
the only solutions of the equation (X,Y ′, A,B) = (X,Y ′, A′, B′) are Y ′ = X
and Y ′ = Y . �

The next result can be seen as a dynamic version of Class f1:

Pascal TwinPorism Let X,Y, P1 . . . , P4 and X,Y, PX1Y 4, PX3Y 2, PX2Y 3, PX4Y 1

be two conic hexagons. Furthermore, let X ′ be a point on the line � = X − Y ,
let C ′ be the conic defined by the 5 points X ′, P1 . . . , P4, and let Y ′ be the
other intersection point of the line � with C ′. Then the conic C ′′ defined by the
5 points X ′, PX1Y 4, PX3Y 2, PX2Y 3, PX4Y 1 passes also through Y ′ (see Fig. 15).
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Figure 15 Proof of the Pascal Twin Porism

Proof We will use Lemma 6 twice in the proof to locate the point Y ′, once
with respect to the conic C ′ and once with respect to the conic C ′′. To do so,
we need the following points:

A = P1 − P2 ∧ � E = PX4Y 1 − PX2Y 3 ∧ �

B = P1 − P4 ∧ � F = PX4Y 1 − PX1Y 4 ∧ �

A′ = P3 − P2 ∧ � E′ = PX3Y 2 − PX2Y 3 ∧ �

B′ = P3 − P4 ∧ � F ′ = PX3Y 2 − PX3Y 2 ∧ �

By a projective transformation, we may assume that

P1 = (0, 1, 1) A′ = (1, 0, 1)

P2 = (1, 1, 1) X = (0, 0, 1)

The other points have the coordinates

P3 = (1, c, 1) X ′ = (u, 0, 1)

P4 = (a, b, 1) Y ′ = (v, 0, 1)

and � = (0, 1, 0). Recall that, on the level of coordinates, the intersection of
lines and the line joining two points is realized by the cross product in R3.
Specifically, this results in the following coordinates for the individual points:

A = � × (P1 × P2) = (1, 0, 0) B = � × (P1 × P4) = (a, 0, 1 − b)

A′ = � × (P3 × P2) = (1, 0, 1) B′ = � × (P3 × P4) = (ac − b, 0, c − b)
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Using the equation (X,Y,A,B) = (X,Y,A′, B′) from Lemma 6, we find the
coordinates for Y to be:

Y = (ac(a − b) + b(b − 1)
︸ ︷︷ ︸

=:α

, 0, (b − ac)(b − 1)).

Using this, we obtain

PX4Y 1 = (Y × P1) × (X × P4) = (αa, αb, ac(a − b2) + b(a + b)(b − 1))
PX2Y 3 = (Y × P3) × (X × P2) = (α, α, a(a + c − bc − 1) + b(b − 1))
PX3Y 2 = (Y × P2) × (X × P3) = (α, αc, b2 + ac(1 + (a − 1)c) − b(1 + ac))
PX1Y 4 = (Y × P4) × (X × P1) = (0, αb, b(a − 1)(1 − b + ac))

and hence

E = � × (PX4Y 1 × PX2Y 3) = (α(a − b), 0, a(a − b)(c − b))
F = � × (PX4Y 1 × PX1Y 4) = (αab, 0, b(b − 1)(b(2a + b − 1) − ac(a + b)))
E′ = � × (PX3Y 2 × PX2Y 3) = (α, 0, b(b − 1) − ac(a + b − 2))
F ′ = � × (PX3Y 2 × PX1Y 4) = (αb, 0, b(b − 1)(b − c)).

It turns out that for X ′ �= Y ′, both equations

(X ′, Y ′, A,B) = (X ′, Y ′, A′, B′) and (X ′, Y ′, E, F ) = (X ′, Y ′, E′, F ′)

can be reduced to

b(ac(u + v − 1) − ((c + 1)uv) + u + v − 1) + c(a− u)(a− v) + b2(u− 1)(v − 1) = 0.

Hence, both equations yield the same point Y ′ for a given point X ′ on �. �

Now, we are ready to prove the Classes e2, e3 and e4. In fact, it will turn out
that these classes just follow from the Pascal Twin Porism starting with a
Siamese Pascal twin in Class f1.

Theorem 7 (Class e2). Let P1, P2, . . . , P6 be points in the projective plane,
and let Pijkl be the intersection of the lines PiPj and PkPl. Then the points
P1, P2, . . . , P6 lie on a conic iff the points P1546, P3526, P2536, P4516, P2356, P1456

lie on a conic.

Proof We have to show that P1, . . . , P6 lie on a conic iff the points Q1, . . . , Q6

lie on a conic, where Q1 = P1546, Q2 = P3526, Q3 = P2536, Q4 = P4516,
Q5 = P2356, Q6 = P1456 (see Fig. 16). Furthermore, let X = P5 and let Y = P6.

By Theorem 1, we know that X,Y, P1, . . . , P4 lie on a conic iff the points
X,Y,Q1, . . . , Q4 lie on a conic. Thus, by the Pascal Twin Porism, for any
points X ′, Y ′ on the line X − Y we have that X ′, Y ′, P1, . . . , P4 lie on a conic
iff X ′, Y ′, Q1, . . . , Q4 lie on a conic. In particular, for X ′ = Q5 we have that the
three points P2, Q5, P3 are collinear, which implies that the conic through the
five points P1, P2, P3, P4, Q5 falls apart into two lines. One line contains the
points P2, Q5, P3, and the other line contains the points P1, P4 and Q6 = Y ′.
Now, by the Pascal Twin Porism we conclude that the six points P1, . . . , P6
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Figure 16 Proof of Theorem 7

lie on a conic if and only if Q1, . . . , Q6 lie on a conic, which completes the
proof. �

Theorem 8 (Class e3). Let P1, P2, . . . , P6 be points in the projective plane,
and let Pijkl be the intersection of the lines PiPj and PkPl. Then the points
P1, P2, . . . , P6 lie on a conic iff the points P1546, P3526, P2536, P4516, P2456, P1356

lie on a conic.

Proof We have to show that P1, . . . , P6 lie on a conic iff the points Q1, . . . , Q6

lie on a conic, where Q1 = P1546, Q2 = P3526, Q3 = P2536, Q4 = P4516, Q5 =
P2456, Q6 = P1356 (see Fig. 17). Furthermore, let X = P5 and let Y = P6.

Figure 17 Proof of Theorem 8
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The proof is essentially the same as the proof for Class e2, the only difference
is that we move X ′ on the line X − Y to the point Q5 = X − Y ∧ P2 − P4.
Since the three points P2, Q5, P4 are collinear, the corresponding point Y ′ on
the line X − Y must be on the line P1 − P3, which implies that Y ′ = Q6.
Therefore, by the Pascal Twin Porism we have that the six points P1, . . . , P6

lie on a conic if and only if Q1, . . . , Q6 lie on a conic, which completes the
proof. �

Theorem 9 (Class e4). Let P1, P2, PX , P5, P6 be five points in the projective
plane such that no three points are on a line. Then the points P15X6, PX526,
P25X6, PX516, P2X56, P1X56 lie on a conic.

Proof This class follows immediately from Class e3 by identifying the two
points P3 and P4 with the point PX (see also Fig. 4). �
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