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The p-harmonic system 
with measure-valued right hand side 

Georg DOLZMANN (I), Norbert HUNGERBOHLER (*) 
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ABSTRACT. - For 2 - A < p < n we prove existence of a distributional 
solution u of the p-harmonic system 

-div((Vulp-2Vu) = p 
71 = 0 

in 0, 
on dR, 

where fl is an open subset of R” (bounded or unbounded), ‘u : R -+ W”, 
and /A is an W”-valued Radon measure of finite mass. For the solution IJ, 
we establish the Lorentz space estimate 

with q = -&(p - 1) and q* = &(p - 1). The main step in the proof is 
to show that for suitable approximations the gradients Duk converge a.e. 
This is achieved by a choice of regularized test functions and a localization 
argument to compensate for the fact that in general u $ W1l”. 

Key words: Degenerate elliptic systems, compactness. 

R~%JMB. - Soit 2 - i < p < n, Q un ensemble ouvert de R” (borne 
ou non borne) et ,LL une mesure de Radon avec masse finite. On demontre 
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que le systeme p-harmonique 

-div( lVu,Ip-2D7,,) = 11 
11, = 0 

dam 12, 
sur d62 

possede une solution distributionnelle. Pour cette solution on Ctablit des 
estimations dans les espaces de Lorentz 

Ici, q = *(p - 1) et q* = &(p - 1). Le pas le plus important est 
de demontrer que, pour des approximations propres, les gradients D?IQ. 
convergent presque partout. Cela est fait en choisissant des fonctions de test 
rCgularisCes et en appliquant un argument de localisation pour compenser 
que, en general, ‘11, $ WI.“. 

1. INTRODUCTION 

For 2 - i < p 5 n Fuchs and Reuling [12] recently proved existence of 
a distributional solution u E nS<* (p-I) WI*” of the p-harmonic system 

(1) -tliv( IOul”-2Vu) = Jo in 0. 

(4 II, = 0 on 30 

for an open (bounded) subset 62 of W”, Y/, : It --f [w”‘, and an W’-valued 
Radon measure CL of finite mass which is supported in a compact Lebesgue 
zero-set. They announce an extension of this result to general Radon 
measures by an involved argument based on a blow-up lemma of [ 111. 
Here we present an approach to existence for general Radon measures 
based on ideas of [ 151 and [5] and establish optimal regularity and decay 
estimates (see the remarks below). 

THEOREM 1. - Suppose that 2 - + < p < n and let St be an open, bounded 
or unbounded subset of [w” and let p be an [Wrr’-valued Radon measure on 12 
of$nite mass. Then the system (1) with boundaq values (2) has a solution 
in the sense of distributions such that ~1, and DU lie in the weak spaces 
L’l*%co and Lqlo3, respectively, and 

with 4 = *(p - 1) and q* = $$ = *cP _ 1). 
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For convenience, we recall the definition of the Marcinkiewicz space 
L’J@(fi): It consists of all measurable functions f on R having the property 
that supt,,, t’lYf*(t) =: ]]f]]E4.- < 00 where f*(t) := inf{y > 0 : 
X,(y) <_ t} is the nonincreasing rearrangement off and X,(y) := P{ IfI > 
y} (the measure of the superlevel set to level y) is the distribution function 
of f. Here, IlfllT;q.- is a pseudo norm and induces a topology on L4+ (a). 
This topology is metrizable, in fact Ilf]]L4,- := ~up+,~tl’Yf**(t) is a 
norm for f**(t) = i s,” f*(y) dy with IlfllT;q~~ 5 llfll~- 5 &llfll>Y.- 
provided q > 1. 

Remarks. - (1) If 62 is bounded then (3) implies in particular that 

u E n w’qn> . 
S<Y 

If R is unbounded and dR is not Lipschitz then (2) holds in the sense that 
there exists a sequence ‘t&k E Cr (fl) such that 

‘uk + u in Wl+(Q n B(0, R)) for all R < cm. 

The exponents in (3) are optimal as can be seen from the nonlinear Green’s 
function G(z) = c]~l-~~/q* (see [9] and [lo]) and L’J+ cannot be replaced 
by Lq. 

(2) Decay estimates: By standard regularity results for solutions of the 
homogeneous p-harmonic system in the unit ball and scaling one easily 
deduces 

]u(x)] 5 C(dist(x, dR U sptp))-“‘y’. 

For this scaling argument it is crucial to bound u in LY*@ and not just 
in L” for all s < 4*. 

To finish this introduction let us briefly comment on some related work. 
Estimates for Vu in LQ and BMO are discussed by DiBenedetto and 
Manfredi in [6] if p lies in the dual space of I@“. The case of a single 
equation with a Radon measure on the right hand side is known for some 
time: see Boccardo and Gallouet [2], [3], Rakotoson [18] (and references 
therein), Boccardo and Murat [4], Benilan et al. [l]. In particular for 
equations the range 1 < y 5 2 - i is also treated in the mentioned articles 
by considering renormalized or entropy solutions. It is not clear how to 
extend these results to systems since truncation behaves quite differently 
for scalar and vector functions. 

Vol. 14, Ilo 3-1997 
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2. APPROXIMATION OF THE SOLUTION 

We approximate a solution of (l)-(2) by the solution (LA. of 

(4) -divo(Vuk) = 6. in 62, 

(5) ‘11 k. = 0 on a2. 

where we here and subsequently write 

n(F) := IFI@F. 

For fk we choose the standard mollification 

where, for k E N, dk(:~) = k:‘“&(k:z) > 0 with a function $0 t 
Gv(0,~))~ 114OlIL’ = 1. Thus we have .fk, E C” n L1 n Lw for 
each k and 

Since CJ is monotone the solution of (4), (5) corresponds to a minimizer of 

Hence for fixed k we find a solution YL~ E XiZP(12. R”‘) of (4)-(S) by the 
direct method of the calculus of variation, where Xt”(07 R’“‘) denotes the 
closure of Cr (0, IJP) in the space X1)“(O:W”‘) = (11 E L” (12, R”‘) : 
lDu[ E P(R)} equipped with norm [[U/I := llulh, + llD~l/,,. Note that for 
bonded sets R we have X,‘>‘(O) = IVi,P(S2). 

3. A PRIORI ESTIMATES 

LEMMA 1. - Suppose 0 c R” is an open set, bounded or unbounded, 
and 2 - i < p < IX. Suppose for 
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there holds 

(6) -divcT(Dfh) = f 

in distributional sense. Then 

where 
4= q* = nq 1 

n - q +$(I, - 113 

and 

Proof. - By scaling it suffices to consider llfllL~ = 1. Now, we use similar 
arguments as Grtiter and Widman in [ 131 for a linear scalar equation with 
L” coefficients. Let Z’,(y) = min(1, fi)y be a truncation function and 
note that ITcy(y)I < IY and 

In particular we have 

F : DT,(y)F 2 0 for all y E R”, 

where A : B = tr (ATB) denotes the inner product on rn x 7~ matrices. 
If we test (6) with Ta(u) we thus obtain 

Since ID(ulJ 5 JDul it follows from the Proposition below that 

and 

(9) 
Vol. 14, n" 3-1997 
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From (8) and (9) one deduces that the distribution function AID,,, satisfies 
for all N > 0 

The choice (y = [jfi I /I% yields 

and the Lemma is proved. cl 
The following estimate has been used by Talenti 1191 in connection with 

quasilinear elliptic equations and later also by Btnilan et al. [ 1, Lemma 4. I] 
for solutions of p-Laplace equations. 

PROPOSITION 1. - Let f E X,‘)p(0), 1 < p < n, and suppose that f > 0 
and that fur all N > 0 

Then 

where (I* = & (p - 1). 

Proof. - Let fn(x) = min(f(:r),ru). Then 

Since fO E X~‘p(C!) the Sobolev embedding theorem yields 

Therefore we conclude 

which proves the Proposition. 0 



r&HARMONIC SYSTEMS 359 

4. L1-CONVERGENCE OF Duk 

From Section 2 we infer that 

llDukllLs 5 c for some s > II- 1, 

(if 52 is unbounded then the latter assertion holds in R rl B(0, R) for all 
R < cm) 

IlfkllU 5 c, 

and 

where a(F) := IFJp-‘F. We choose a subsequence such that 

%Lk - u in W,:: and a.e.. 

o(hk) - Ti in Lc, 
IDur, - Dul - h, in Lf,,, 

f$,/1, inM. 

Then we claim that h = 0 a.e. and hence that Duk + Du in L:,,,. 

Proof. - We combine ideas of Evans in [7], of Chen, Hong and 
Hungerbtihler in [5] and of Mtiller in [ 151. One would like to use a 
truncation of ?Lk - u as a testfunction. This runs into problems since in 
general Du $ L”. Therefore one fixes a function 7~ (which later will be 
chosen as a linear Taylor polynomial of ?A) and uses a truncation of ‘uk - 11. 
Let 

such that 1 > 7) 2 0, 0 5 4 5 1, Q E C1 (0, cc), N and o’ bounded and 
non-negative, and $)I,ptV = Id. Then 

(10) / I DUk - Dul q(‘t& - ?J) 4 dx 
* R 

Vol. 14, no 3-1997. 
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Now, suppose for the moment that p 2 2. Then, since $Jspt,, = Id, 

- 1 ~(n7,,,.)D(li’!(~nL. +))(I - l)(Ib,< - ll))(,:)tl.r~ 
. Sl 

- 
il 

rr(D1:) (DU,< - D71) 7/(71,k. - r) q5tl.r 

= : I + II+ III. 

We discuss the terms I and II separately: 

To estimate II note that 

so that 

F : D$(z)F > 0 for all z E R”’ and F E WtXri. 

Hence 
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Since ‘Ilk -+ u a.e. and v, $ and D?,b are continuous and bounded it 
follows that 

(11) T, := li;x,p Tk 

Moreover by (10) 

(12) 

pl P 
h rj(u - II) c$ dz <clIP T? (.I’ rj(u - w) c$ dx 

R > 
+ 

I 
R lDv - Duj rj(u - ,u) 4 dx. 

We are still free to choose v and rl, 4 and 4. Let (I be simultaneously a 
Lebesgue point of IL, Du, /1 and 3, and let 

with 41 as in the above discussion. We choose u to be the linear Taylor 
polynomial of IL in CL, i.e. 

w(x) = u(a) + (Du(a))(x - a). 

Vol. 14. II” 3.1997 
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Then, for a.e. u, we have as I’ + 0 

. 
f’ 

~(a,r) Fb:) - 3~) I dx + 0 

(see e.g. 181). Furthermore we may assume that 

,irrl slip ~(~(U, 7.)) 
L <Ix. 

7.10 
7’1’ 

Hence by (11) we conclude 

limsupT,,,. = 0 
r+o 

(where T,,, denotes the expression (11) with q and q5 replaced by r17. and 
q$., respectively) and (12) yields 

h(a) = 0 for a.e. (L E 0. 

Thus the claim is proved in case p 2 2. For 2 - i < 21 < 2 notice that 
for all m x 71 matrices F and G 

(c(F)F - cr(G)G) : (F - G) 2 clF - Gl’(IFI -5 IG()p-” 

for a constant c > 0. Now we replace (10) by 

5 n IDur+ - D I I( J’ 
w r ‘“,k - w) qbdx + 

.I 
JDv - Dul 7424 - w) q5d:r: 

(1 

- (S 

f 
< [DUE - Dv12( JDuk( + ID?#-“+k - u) 4 dn: 

R > 
. 



1)-HARMONIC SYSTEMS 363 

Then, we have as before 

and the rest of the proof is analogue to the case y > 2. Notice that we need 
7~ 2 2 to conclude that the second factor on the right of (10’) 

remains finite in the localization process for almost all a E R. 
From 

Duk + Du strongly in L:,, (62) 

and 

q 

Duk - Du weakly in L;,,(0) 

we conclude that for all s’ < s 

Duk ---t Du strongly in L::,(R) 

and hence we may pass to the limit 5 -+ cc in (4) and Theorem 1 follows. 
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