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Abstract The exponential pencil Gλ := G1(G
−1
0 G1)

λ−1, generated by two conics
G0,G1, carries a rich geometric structure: It is closed under conjugation, it is compat-
ible with duality and projective mappings, it is convergent for λ → ±∞ or periodic,
and it is connected in various ways with the linear pencil gλ = λG1 + (1−λ)G0. The
structure of the exponential pencil can be used to characterize the position of G0 and
G1 relative to each other.
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1 Introduction

The linear pencil gλ = λG1+ (1−λ)G0, λ ∈ R, of two circles or conics G0 andG1 is
an extremely useful tool in the study of the geometry of circles and of conic sections, or,
in higher dimensions, of quadrics. The linear pencil has a wide range of applications:
for example, the circles of Apollonius (see Coxeter 1989), Gergonne’s solution of
Apollonius’ Problem to construct a circle touching three given circles (see Coolidge
1971), Cayley’s characterization of conics which carry Poncelet polygons (see Cayley
1854), or the classification of the relative position of two conics (see Petitjean 2010).
But the linear pencil is not only a tool, it is also an interesting object in its own rightwith
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a rich geometry to study. However, the linear pencil lacks certain desirable properties:
For example, it is not compatible with duality, i.e., the linear pencil of the dual of two
conics is not the dual of the pencil of the two conics (see Sects. 2.1 and 3), and the
linear pencil does, in general, not exist as real conics for all λ ∈ R. In this article, we
investigate the exponential pencil Gλ = G1(G

−1
0 G1)

λ−1 of two conics G0 and G1. It
turns out, that this pencil has a remarkable spectrum of geometric properties, which
we study in Sect. 3. In Sect. 4 we classify the exponential pencils according to the
relative position of the generating conics. But first, we start with some preliminary
remarks to set the stage and to fix the notation.

2 Preliminaries

2.1 Matrix powers

Let f : R → C
n×n be analytic such that

(a) f (0) = I, where I is the identity matrix,
(b) f (1) = A,
(c) f (x + y) = f (x) · f (y) for all x, y ∈ R.

In particular, we have f (−x) = f (x)−1 for all x ∈ R, and therefore A is necessarily
regular. Moreover, all matrices f (x), f (y) commute. With the infinitesimal generator
F := f ′(0), we may write f (x) = eFx . In particular, A = f (1) = eF , i.e., F is
a logarithm of A. The logarithm of a matrix is in general not unique. Nonetheless,
(a)–(c) determine the values of f (n) for all n ∈ Z. It is convenient to write f (x) = Ax

for a function satisfying (a)–(c). However, we have to keep in mind that two different
logarithms of A define different functions x �→ Ax . In concrete cases, a function Ax

can be calculated by the binomial series

Ax = (I + (A − I))x =
∞∑

k=0

(
x

k

)
(A − I)k

whenever the series converges.
Let f (x) = Ax be a solution of (a)–(c), and suppose the matrix A is similar to

the matrix B, i.e., B = T−1AT . Then g(x) := T−1 f (x)T is analytic, g(0) = I,
g(1) = T−1AT = B, and g(x + y) = g(x) · g(y) for arbitrary x, y ∈ R. Thus,
g(x) = Bx . In this situation, the infinitesimal generators of f and g are similar:
g′(0) = T−1 f ′(0)T .

2.2 Projective plane and conics

We will work in the standard model of the real projective plane, i.e., we consider the
set of points P = R

3\{0}/ ∼, where x ∼ y ∈ R
3\{0} are equivalent if x = λy

for some λ ∈ R. The set of lines is B = R
3\{0}/ ∼, where g ∼ h ∈ R

3\{0} are
equivalent, if g = λh for some λ ∈ R. We that say a point [x] and a line [g] are
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incident if 〈x, g〉 = 0, where we denoted equivalence classes by square brackets and
the standard inner product in R

3 by 〈·, ·〉.
As usual, a line [g] can be identified with the set of points which are incident with

it. Vice versa, a point [x] can be identified with the set of lines which pass through it.
The affine plane R

2 is embedded in the present model of the projective plane by the
map

(
x1
x2

)
�→

⎡

⎣

⎛

⎝
x1
x2
1

⎞

⎠

⎤

⎦ .

The projective general linear group PGL(3, R) consists of equivalence classes [A]
of regular matrices A ∈ R

3×3 representing maps P → P, [x] �→ [Ax], where two
matrices are equivalent, denoted A1 ∼ A2, if A1 = λA2 for some λ ∈ R.

A conic in this model of the projective plane is an equivalence class of a regular,
linear, selfadjoint map A : R

3 → R
3 with mixed signature, i.e., A has eigenvalues of

both signs. It is convenient to say a matrix A is a conic, instead of A is a representative
of a conic. We may identify a conic by the set of points [x] such that 〈x, Ax〉 = 0,
or by the set of lines [g] for which 〈A−1g, g〉 = 0 (see below). Notice that, in this
interpretation, a conic cannot be empty: Since A has positive and negative eigenvalues,
there are points [p], [q] with 〈p, Ap〉 > 0 and 〈q, Aq〉 < 0. Hence a continuity
argument guarantees the existence of points [x] satisfying 〈x, Ax〉 = 0.

From now on, we will only distinguish in the notation between an equivalence class
and a representative if necessary.

Fact 2.1 Let x be a point on the conic A. Then the line Ax is tangent to the conic A
with contact point x.

Proof We show that the line Ax meets the conic A only in x . Suppose otherwise, that
y � x is a point on the conic, i.e., 〈y, Ay〉 = 0, and at the same time on the line
Ax , i.e., 〈y, Ax〉 = 0. By assumption, we have 〈x, Ax〉 = 0. Note, that Ax � Ay
since A is regular, and 〈Ay, x〉 = 0 since A is selfadjoint. Hence x and y both are
perpendicular to the plane spanned by Ax and Ay, which contradicts y � x . 
�
In other words, the set of tangents of a conic A is the image of the points on the conic
under the map A. And consequently, a line g is a tangent of the conic iff A−1g is a
point on the conic, i.e., if and only if 〈A−1g, g〉 = 0.

Definition 2.2 If P is a point, the line AP is called its polar with respect to a conic
A. If g is a line, the point A−1g is called its pole with respect to the conic A.

Obviously, the pole of the polar of a point P is again P , and the polar of the pole of a
line g is again g. Moreover:

Fact 2.3 If the polar of a point P with respect to a conic A intersects the conic in a
point x, then the tangent in x passes through P.

Proof For x , we have 〈x, Ax〉 = 0 since x is a point on the conic, and 〈x, AP〉 = 0
since x is a point on the polar of P . The tangent in x is the line Ax , and indeed, P lies
on this line, since 〈P, Ax〉 = 〈AP, x〉 = 0. 
�
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The fundamental theorem in the theory of poles and polars is

Fact 2.4 (La Hire’s Theorem) Let g be a line and P its pole with respect to a conic
A. Then, for every point x on g, the polar of x passes through P. And vice versa: Let
P be a point and g its polar with respect to a conic A. Then, for every line h through
P, the pole of h lies on g.

Proof We prove the second statement, the first one is similar. The polar of P is the
line g = AP . A line h through P satisfies 〈P, h〉 = 0 and its pole is Q = A−1h. We
check, that Q lies on g: Indeed, 〈Q, g〉 = 〈A−1h, AP〉 = 〈AA−1h, P〉 = 〈h, P〉 = 0.


�
The next fact can be viewed as a generalization of Fact 2.4:

Theorem 2.5 Let A and G be conics. Then, for every point x on G, the polar p of
x with respect to A is tangent to the conic H = AG−1A in the point x ′ = A−1Gx.
Moreover, x ′ is the pole of the tangent g = Gx in x with respect to A.

H

A

G

x

p

x

g

Proof It is clear that H = AG−1A is symmetric and regular, and by Sylvester’s law
of inertia, H has mixed signature. The point x on G satisfies 〈x,Gx〉 = 0. Its pole
with respect to A is the line g = Ax . This line is tangent to H iff 〈H−1g, g〉 = 0.
Indeed, 〈H−1g, g〉 = 〈(AG−1A)−1Ax, Ax〉 = 〈A−1Gx, Ax〉 = 〈Gx, x〉 = 0.

Since 〈x ′, Hx ′〉 = 〈A−1Gx, AG−1AA−1Gx〉 = 〈Gx, x〉 = 0, the point x ′ =
A−1Gx lies on H . The tangent to H in x ′ is Hx ′ = AG−1AA−1Gx = Ax which
is indeed the polar of x with respect to A. The last statement in the theorem follows
immediately. 
�
Definition 2.6 The conic H = AG−1A is called the conjugate conic ofG with respect
to A.

Recall that the dual of a point P ∈ P is the line P ∈ B and the dual of the line g ∈ B

is the point g ∈ P. In particular, P and g are incident if and only if their duals are
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incident. The dual lines of all points on a conic A are tangent to the conic A−1, and
the dual points of all tangents of a conic A are points on the conic A−1. Therefore,
A−1 is called the dual conic of the conic A. We will denote the dual A−1 of a conic A
by A′.

The projective space P = R
3\{0}/ ∼ can also be represented as the unit sphere

S2 ⊂ R
3 with antipodal identification of points. Then, this space S, endowed with the

natural metric d([x], [y]) = arcsin ‖x × y‖, becomes a complete metric space with
bounded metric. The set of closed sets in this space is a complete metric space with
respect to the inherited Hausdorff metric. In particular, a conic A given by

{x ∈ S2 | 〈x, Ax〉 = 0}/ ∼

is a compact set in S. In this sense, we can consider the limit of a sequence of conics.

3 The exponential pencil

The linear pencil of two matrices g0, g1 ∈ C
n×n is given by

gλ := λg1 + (1 − λ)g0, λ ∈ R.

This notation is consistent for the values λ = 0 and λ = 1. If g0 and g1 commute,
exponentiation of the linear pencil gives

Gλ := egλ = eλg1+(1−λ)g0 = eg1(e−g0eg1)λ−1 = G1(G
−1
0 G1)

λ−1 (1)

where Gi := egi . The last expression in (1) makes sense also for non-commuting
matrices and we may define an exponential pencil of two matrices G0,G1 ∈ C

n×n by

Gλ := G1(G
−1
0 G1)

λ−1, λ ∈ R, (2)

provided (G−1
0 G1)

x , x ∈ R, exists in the sense of Sect. 2.1. The notation Gλ in (2) is
consistent for the values λ = 0 and λ = 1. Notice that for regular matrices G0,G1,
a unique discrete exponential pencil Gn = G1(G

−1
0 G1)

n−1 for n ∈ Z exists. This
general concept applies naturally to conics and we define:

Definition 3.1 Let G0,G1 be two conics. Then

Gλ := G1(G
−1
0 G1)

λ−1, λ ∈ R,

is called an exponential pencil generated by G0 and G1 provided that all Gλ are
symmetric and real.

Remarks

(a) For an exponential pencil to exist, it is necessary and sufficient that G−1
0 G1 has a

real logarithm F such that G1F is symmetric.
(b) In Sect. 4 we will see that the existence of an exponential pencil depends on the

position of G0 and G1 relative to each other, and except for only one case, the
exponential pencil is unique.
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(c) Each Gλ in an exponential pencil generated by G0 and G1 is actually a conic:
In contrast to the linear pencil, an exponential pencil of conics does not contain
degenerate or complex conics. This is a consequence of the following Lemma.

Lemma 3.2 If Gλ = G1(G
−1
0 G1)

λ−1, λ ∈ R, is an exponential pencil of two conics
G0,G1, then

(i) det(Gλ) = det(G1)
λ/ det(G0)

λ−1,
(ii) Gλ has mixed signature for all λ ∈ R.

Proof (i) Let L be a logarithm of G−1
0 G1. Then, we have

det Gλ = detG1(G
−1
0 G1)

λ−1 = detG1 det e
(λ−1)L = detG1e

trace(λ−1)L

= detG1

(
etrace L

)λ−1 = det G1

(
det eL

)λ−1 = detG1

(
det G1

detG0

)λ−1

.

(ii) Since Gλ is symmetric, it has real eigenvalues which depend continuously on λ.
Then, according to (i), the product of the eigenvalues cannot change sign and the
signature of Gλ remains constant. 
�
The next Lemma will have immediate geometric consequences:

Lemma 3.3 If Gλ, λ ∈ R, is an exponential pencil of G0,G1 and ξ, μ ∈ R, there
holds

GμG
−1
ξ Gμ = G2μ−ξ .

Proof

GμG
−1
ξ Gμ = G1(G

−1
0 G1)

μ−1
(
G1(G

−1
0 G1)

ξ−1
)−1

G1(G
−1
0 G1)

μ−1

= G1(G
−1
0 G1)

μ−1(G−1
0 G1)

1−ξG−1
1 G1(G

−1
0 G1)

μ−1

= G1

(
G−1

0 G1

)2μ−ξ−1 = G2μ−ξ .


�
In view of Theorem 2.5 and Definition 2.6, we get as an immediate consequence of
Lemma 3.3:

Theorem 3.4 An exponential pencil Gλ, λ ∈ R, of two conics is closed under conju-
gation: The conjugate of Gξ with respect to Gμ is G2μ−ξ .

More generally, we have the following:

Lemma 3.5 If Gλ0 and Gλ1 belong to a pencil Gλ = G1(G
−1
0 G1)

λ−1 generated by
G0,G1, then Gλ0 and Gλ1 generate the same exponential pencil as G0 and G1. More
precisely, we have

Gλ1(G
−1
λ0

Gλ1)
λ−1 = G1(G

−1
0 G1)

λ0+λ(λ1−λ0)−1 = Gλ0+λ(λ1−λ0).
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In particular, the exponential pencil does not depend on the order of the defining conics
G0 and G1.

Proof Let f (x) := (G−1
0 G1)

x(λ1−λ0) for x ∈ R. Then f (0) = I, and

f (1) = (G−1
0 G1)

λ1−λ0 = (G−1
0 G1)

1−λ0G−1
1 G1(G

−1
0 G1)

λ1−1

=
(
G1(G

−1
0 G1)

λ0−1
)−1

G1(G
−1
0 G1)

λ1−1 = G−1
λ0

Gλ1 .

Moreover, f (x + y) = f (x) f (y). Therefore, according to Sect. 2.1, we may write
f (x) = (G−1

λ0
Gλ1)

x . We obtain

Gλ1(G
−1
λ0

Gλ1)
λ−1 = Gλ1 f (λ − 1) = G1(G

−1
0 G1)

λ1−1(G−1
0 G1)

(λ−1)(λ1−λ0)

where we used the original definition of f in the last equality. Now the claim follows
immediately. 
�
It turns out that exponential pencils behave well with respect to duality:

Theorem 3.6 Let G0 and G1 be conics and G ′
0 and G ′

1 their duals. Suppose G0 and
G1 generate an exponential pencil Gλ. Then, the dual of Gλ is an exponential pencil
of G ′

0 and G ′
1. More precisely, for all λ ∈ R we have

G ′
1(G

′
0
−1G ′

1)
λ−1 = (G1(G

−1
0 G1)

λ−1)′.

Observe that the linear pencil does not enjoy the corresponding property.

Proof Suppose Gλ = G1(G
−1
0 G1)

λ−1 is an exponential pencil generated by G0 and
G1. Then, for x ∈ R, let f (x) := G1−xG

−1s
1 = G1(G

−1
0 G1)

−xG−1
1 . Observe that

f (0) = I, f (1) = G0G
−1
1 and

f (x + y) = G1(G
−1
0 G1)

−(x+y)G−1
1 =

(
G1(G

−1
0 G1)

−xG−1
1

) (
G1(G

−1
0 G1)

−yG−1
1

)

= f (x) f (y)

and therefore, according to Sect. 2.1, wemaywrite f (x) = (G0G
−1
1 )x = (G ′

0
−1G ′

1)
x .

We obtain

(G1(G0
−1G1)

x )−1 = G−1
1 f (x) = G ′

1(G
′
0
−1G ′

1)
x

and claim follows by replacing x by λ − 1. 
�
The natural question is now to askwhich conicsG0,G1 generate an exponential pencil.
To answer this question,we recall that two conics can lie in 8 different positions relative
to each other (see Petitjean 2010):
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Case 1: four intersections Case 2: no intersections Case 3: two intersections

Case 4: two intersections,
one 1st order contact

Case 5: one 1st order contact Case 6: two 1st order
contacts

Case 7: one intersection, one
2nd order contact

Case 8: one 3rd order contact

We now go case by case through the list and investigate the existence and the
geometric properties of the resulting exponential conics. In particular, it will turn out
that the exponential conic and the linear conic are quite closely related. We start with
the important observation that the exponential pencil is projectively invariant:

Lemma 3.7 Let S ∈ R
n×n be a regular matrix, inducing a projective map P →

P, x �→ Sx. Then the image under S of an exponential pencil Gλ = G1(G
−1
0 G1)

λ−1

of two conics G0,G1 is an exponential pencil of their images.

Proof For T := S−1, the images of the conics G0,G1 under S are Ḡ0 := T�G0T
and Ḡ1 := T�G1T . We want to show that the image Ḡλ = T�GλT is an exponential
pencil of Ḡ0 and Ḡ1. We start by definig f (x) := T−1(G−1

0 G1)
x T for x ∈ R. We

have f (0) = I, f (1) = Ḡ−1
0 Ḡ1 and

f (x + y) = T−1(G−1
0 G1)

x+yT=(
T−1(G−1

0 G1)
x T

)(
T−1(G−1

0 G1)
yT

)

= f (x) f (y)

and therefore, according to Sect. 2.1, we may write f (x) = (Ḡ−1
0 Ḡ1)

x . We obtain

T�Gx+1T = T�G1(G
−1
0 G1)

x T = Ḡ1 f (x) = Ḡ1(Ḡ
−1
0 Ḡ1)

x

and claim follows by replacing x by λ − 1. 
�
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The investigation of the exponential pencils in all the Cases 1–8 listed above can now
be reduced to a canonical form in each case.

4 Classification of the exponential pencils

The two figures below show the exponential pencil of two conics G0,G1 (bold) in
two cases. On the left, the geometry seems rather gentle, on the right quite complex.

In this section, we investigate the exponential pencil of two conics in each of the
possible cases of their relative position. It turns out that the geometric behavior of the
exponential pencil is characteristic for each case.

Theorem 4.1 (Case 1) Let G0,G1 be two conics with four intersection points. Then,

they generate an exponential conic Gλ = G1

(
G−1

0 G1

)λ−1
iff the common interior of

G1 and G0 is connected. In this case, the exponential pencil is unique. Gλ converges
for λ → ±∞ to a line �±. The family Gλ has an envelope E with asymptotes �±.
Through every exterior point of E (i.e., points with four tangents to E), except for
the points on �±, there pass exactly two members of the exponential pencil Gλ. Each
Gλ touches a member of the linear pencil gλ = λG1 + (1 − λ)G0 in two first order
contact points.

Proof After applying a suitable projective map, we may assume that

G0 =
⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠ , G1 =
⎛

⎝
a2 0 0
0 ±b2 0
0 0 −1

⎞

⎠ ,

where a > 1 > b > 0 or b > 1 > a > 0 for the positive sign, and a > 1 for the
negative sign (see Halbeisen and Hungerbühler 2017). Let

A := G−1
0 G1 =

⎛

⎝
a2 0 0
0 ±b2 0
0 0 1

⎞

⎠ ,
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then every solution X of eX = A leads to an exponential pencil Gλ = G1e(λ−1)X

of G0 and G1, provided Gλ is a real symmetric matrix for all λ ∈ R. In particular,
h(x) := exX must be real for all x ∈ R. But then h′(0) = X must be real. We
can therefore concentrate on real solutions of eX = A. According to Culver (1966,
Theorem 1), such a real solution exists only for the positive sign in A. This corresponds
to the case, where the common interior of G0 and G1 is connected. Then, the solution
of eX = A is unique, according to Culver (1966, Theorem 2), and we obtain a unique
exponential pencil given by

Gλ = G1

(
G−1

0 G1

)λ−1 =
⎛

⎝
a2λ 0 0
0 b2λ 0
0 0 −1

⎞

⎠ . (3)

The envelope E is obtained by eliminating λ from ∂
∂λ

〈x,Gλx〉 = 0 and 〈x,Gλx〉 = 0.
One finds

(x21 )
log b(x23 )

log a | log a|log a
∣∣∣log

a

b

∣∣∣
log b = (x22 )

log a(x23 )
log b| log b|log b

∣∣∣log
a

b

∣∣∣
log a

.

The figure shows in the affine plane x3 = 1 the pencil generated by the unit circle
G0 and an ellipse G1 (both bold), together with the asymptotic lines �± (red) and the
envelope E (blue).


�

Theorem 4.2 (Case 2) Let G0,G1 be two disjoint conics. Then they generate an

exponential pencil Gλ = G1

(
G−1

0 G1

)λ−1
iff G1 is in the interior of G0 or vice

versa, in which case the exponential pencil is unique. Gλ converge for λ → ±∞ to a
point (which coincides with a limit point of the linear pencil gλ = λG1 + (1−λ)G0),
and a line (which contains the second limit point of the linear pencil). Each Gλ touches
two members of the linear pencil gλ = λG1 + (1 − λ)G0 in two first order contact
points, or, if G0,G1 are projectively equivalent to concentric circles, each Gλ belongs
to the linear pencil.
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Proof Since G0,G1 are disjoint, there exist coordinates for which both conics are
diagonal [see for example Pesonen (1956) or Hong et al. (1986)]: W.l.o.g.

G0 =
⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠ , G1 =
⎛

⎝
a2 0 0
0 ±b2 0
0 0 −1

⎞

⎠ ,

where 1 > a, b > 0 or a, b > 1 in case of the positive sign, and 1 > a > 0, b > 0 in
case of the negative sign. Then,

A := G−1
0 G1 =

⎛

⎝
a2 0 0
0 ±b2 0
0 0 1

⎞

⎠ .

As in Case 1, an exponential pencil can only exist for the positive sign in A. This
corresponds to the case where G0 is in the interior of G1 or vice versa. Now, we have
to consider two cases:

Case 2a. a �= b: Then, by the same reasoning as in Case 1, the exponential pencil
Gλ is unique and given by (3). The figure on the left shows, in the plane x3 = 1, the
exponential pencil generated by the unit circleG0 and an ellipseG1 inside ofG0 (both
bold). The limit as λ → ∞ is the center (red), and as λ → −∞ the ideal line. It is
instructive to look at the same configuration on the sphere (figure on the right, limit
point and limit ideal line in red).

Case 2b. a = b: In this case we have

A := G−1
0 G1 =

⎛

⎝
a2 0 0
0 a2 0
0 0 1

⎞

⎠ ,

and according to Culver (1966, Theorem 2, and Corollary), there is a continuum of
real solutions of eXμ = A. So, there is a chance that the exponential pencil is not
unique. From Gantmacher (1998, §8) we infer that all matrices

Xμ =
⎛

⎝
log a2 0 0
0 log a2 0
0 0 0

⎞

⎠ + K

⎛

⎝
2nπ i 0 0

2mπ i 0
0 0 0

⎞

⎠ K−1, (4)
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where m, n are integers and K is an arbitrary regular matrix of the form

K =
⎛

⎝
k11 k12 0
k21 k22 0
0 0 k33

⎞

⎠ ,

are logarithms of A, and there are no other logarithms. Then e(λ−1)Xμ has the same
block structure as K . Now, in our case, we need that Gλ = G1e(λ−1)Xμ is real and
symmetric. But this implies that G−1

1 Gλ = e(λ−1)Xμ is real and symmetric for all
λ. Then the derivative of this with respect to λ at λ = 1 gives that Xμ must be

real and symmetric. Then for each k ∈ N, eXμ/2k is also symmetric and real, and
positive definite, because eXμ/2k = eXμ/2k+1

eXμ/2k+1
. Recall that repeated roots A1/2k

of A which are real, symmetric and positive definite, are unique. This means, that the
values of eXμ/2k agree for all integers k. Therefore, the infinitesimal generators Xμ

must actually agree. In other words, there is only one real symmetric logarithm X
of A, and the exponential pencil is given by (3), i.e. a family of concentric circles.
Alternatively, the uniqueness can be seen directly from (4) by imposing symmetry and
real valuedness of Xμ. 
�
Theorem 4.3 (Case 3) Let G0,G1 be two conics with two intersectctions. Then they

generate a countable family of exponential pencils Gλ = G1

(
G−1

0 G1

)λ−1
. Such a

pencil is either periodic with a conic as envelope, or periodically expanding covering
the plane infinitely often, with a local envelope which has a singular point S. For
integer values of λ, the corresponding conics of all exponential pencils agree.

Proof After applying a suitable projective map, we may assume that

G0 =
⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠ , G1 =
⎛

⎝
1 0 −a
0 1 0

−a 0 a2 − r2

⎞

⎠ , a > 0,

(see Halbeisen and Hungerbühler 2017). Geometrically, G1 represents a circle of
radius r > 0 in the plane x3 = 1 with center in (a, 0) which intersects the unit circle
G0, centered in (0, 0), in two real points. I.e., −1 < a − r < 1 and 1 < a + r , which
implies that κ := (1− a + r)(1+ a − r)(a + r − 1)(a + r + 1) > 0 because all four
factors are strictly positive. We now use a translation T , a swap of axis P , a scaling
L , and a rotation R, namely

T =
⎛

⎝
1 0 τ

0 1 0
0 0 1

⎞

⎠ , P =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ ,

L =
⎛

⎝
� 0 0
0 1/� 0
0 0 1

⎞

⎠ , R =
⎛

⎝
c −√

1 − c2 0√
1 − c2 c 0
0 0 1

⎞

⎠ ,
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with the following values

τ = 1 + a2 − r2

2a
,

� =
4
√

κ√
2a

,

c = 1

2

√

2 −
√

κ

a
.

Notice that 4a2 − κ = (1 + a2 − r2)2 ≥ 0 and hence the radicand 2 −
√

κ

a ≥ 0 in c.
For U = T PLR this leads to the following representation of the conics:

U�G0U =
⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠ , U�G1U =
⎛

⎝
(a2 − r2 − 1)/2

√
κ/2 0√

κ/2 (r2 − a2 + 1)/2 0
0 0 1

⎞

⎠ .

In the plane x3 = 1 these are rotated hyperbolas centered at (0, 0, 1), and we denote
them again by G0 and G1. Then, G

−1
0 G1 has the form

A := G−1
0 G1 =

⎛

⎝
r cosφk −r sin φk 0
r sin φk r cosφk 0

0 0 1

⎞

⎠

for φk = 2kπ + arccos 1−a2+r2
2r , where k is an arbitrary integer. Notice, that −2r <

1 − a2 + r2 < 2r , again because the factors of κ are strictly positive, and hence the
values φk are real. Here, according to Gantmacher (1998, §8), we find the following
solutions X of A = eXk :

Xk =
⎛

⎝
log r −φk 0
φk log r 0
0 0 0

⎞

⎠ .

Therefore, we get

e(λ−1)Xk = (G−1
0 G1)

λ−1 =
⎛

⎝
rλ−1 cos (λ − 1)φk −rλ−1 sin (λ − 1)φk 0
rλ−1 sin (λ − 1)φk rλ−1 cos (λ − 1)φk 0

0 0 1

⎞

⎠

and finally

Gλ = G1(G
−1
0 G1)

λ−1 =
⎛

⎝
−rλ cos λφk rλ sin λφk 0
rλ sin λφk rλ cos λφk 0

0 0 1

⎞

⎠ .
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For r = 1 (andonly in this case), the resulting exponential pencil is periodicwith period
2π/φk . Hence, in the plane x3 = 1, Gλ are rectangular hyperbolas, rotating around
the origin with constant angular velocity φk . For r �= 1, the rectangular hyperbolas are
rotatingwith constant angular velocityφk and at the same time exponentially shrinking
(r > 1) or expanding (0 < r < 1) with factor rλ. The figures below show the two
cases: G0 and G1 are bold, the envelope is blue, the singular point S is red.


�

Remark The case when r = 1 (i.e., when the resulting exponential pencil is periodic),
was studiedwith respect to Poncelet’s Theorem inHalbeisen andHungerbühler (2016)
and Halbeisen and Hungerbühler (2017).

Theorem 4.4 (Case 4) Let G0,G1 be two conics with two intersections and one first

order contact. Then they generate an exponential pencil Gλ = G1

(
G−1

0 G1

)λ−1
iff

the contact point of G1 and G0 lies on the boundary of their common interior. Then
the exponential pencil is unique. Each Gλ touches a member of the linear pencil
gλ = λG1 + (1−λ)G0 in two first order contact points. For λ → ±∞, Gλ converges
to the tangent in the contact point, and to a line trough the contact point, respectively.
The family Gλ has an envelope E.

Proof After applying a suitable projective map, we may assume that

G0 =
⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠ , G1 =
⎛

⎝
μ + 1 0 −μ

0 1 − μ 0
−μ 0 μ − 1

⎞

⎠ , μ �= 1, μ �= 0,

(see Halbeisen and Hungerbühler (2017)). Then,

A := G−1
0 G1 =

⎛

⎝
μ + 1 0 −μ

0 1 − μ 0
μ 0 1 − μ

⎞

⎠ .
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With

T =
⎛

⎝
1 1/μ 0
0 0 1
1 0 0

⎞

⎠ , J =
⎛

⎝
1 1 0
0 1 0
0 0 1 − μ

⎞

⎠ = I +
⎛

⎝
0 1 0
0 0 0
0 0 −μ

⎞

⎠

︸ ︷︷ ︸
=:α

we get G−1
0 G1 = I + TαT−1. As in the proof of Case 2b, we are only interested in

real logarithms of A. By Culver (1966, Theorem 1), the real logarithm of A exists iff
μ < 1. This corresponds to the situation where the contact point sits on the boundary
of the common interior ofG0 andG1. ByCulver (1966, Theorem 2), the real logarithm
is unique. By the binomic series we get

(G−1
0 G1)

x = (I + TαT−1)x = T
∞∑

k=0

(
x

k

)
αkT−1

=
⎛

⎝
1 + μx 0 −μx

0 (1 − μ)x 0
μx 0 1 − μx

⎞

⎠ ,

and finally the exponential pencil

Gλ = G1

(
G−1

0 G1

)λ−1 =
⎛

⎝
1 + λμ 0 −λμ

0 (1 − μ)λ 0
−λμ 0 λμ − 1

⎞

⎠ .

Notice that the binomial series converges only for |μ| < 1. But the expression we got
for (G−1

0 G1)
x satisfies the properties of Sect. 2.1 and therefore the result for Gλ is

correct for arbitrary μ < 1,μ �= 0. The conics Gλ are symmetric to the line (0, 1, 0)�
and touch G0,G1 in their contact point. The envelope E is obtained by eliminating λ

from ∂
∂λ

〈x,Gλx〉 = 0 and 〈x,Gλx〉 = 0. In the plane x3 = 1 one finds

(1 + x1) ln(1 − μ) = (1 − x1)μ

(
ln

(
− μ(x1 − 1)2

x22 ln(1 − μ)

)
− 1

)
.

The figure shows, in the plane x3 = 1, the pencil generated by the unit circle G0 and
an ellipse G1 (both bold) together with the limiting lines (red) and the envelope E
(blue).
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�
Theorem 4.5 (Case 5) Let G0,G1 be two conics with one first order contact point C.

Then, they generate an exponential pencil Gλ = G1

(
G−1

0 G1

)λ−1
iff G1 lies inside

of G0 or vice versa. This exponential pencil is unique. The family Gλ together with
the tangent in C forms a foliation of P\{C}. Each Gλ touches a member of the linear
pencil gλ = λG1 + (1− λ)G0 in two first order contact points. If G1 is inside of G0,
then Gλ converges to C for λ → ∞, and to the tangent in C for λ → −∞. If G0 lies
inside of G1 it is the other way round.

Proof After applying a suitable projective map, we may assume that

G0 =
⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠ , G1 =
⎛

⎝
1 0 −a
0 1 0

−a 0 2a − 1

⎞

⎠ , a �= 1, a �= 0,

(see Halbeisen and Hungerbühler 2017), i.e., G0 is a unit circle centered in (0, 0, 1)�
and G1 a circle with center (a, 0, 1)� which touches G0 in (1, 0, 1)�. Then,

A := G−1
0 G1 =

⎛

⎝
1 0 −a
0 1 0
a 0 1 − 2a

⎞

⎠ .

With

T =
⎛

⎝
0 0 1/a
1 0 0
0 1 0

⎞

⎠ , J =
⎛

⎝
1 0 0
0 1 − a 1
0 0 1 − a

⎞

⎠ = I +
⎛

⎝
0 0 0
0 −a 1
0 0 −a

⎞

⎠

︸ ︷︷ ︸
=:α

we get G−1
0 G1 = I + TαT−1. As in Case 4, the real logarithm of A exists, and is

unique, iff 1 > a. This corresponds to the case where G0 is inside G1 or vice versa.
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Then, by the binomic series, we get

(G−1
0 G1)

x = (I + TαT−1)x = T
∞∑

k=0

(
x

k

)
αkT−1

=
⎛

⎝
(1 − a)x−1(1 + a(x − 1)) 0 −(1 − a)x−1ax

μ 1 0
(1 − a)x−1ax 0 (1 − a)x−1(1 − a(x + 1))

⎞

⎠ ,

and finally the exponential pencil

Gλ = G1

(
G−1

0 G1

)λ−1 =
⎛

⎝
(1 − a)λ−1(1 + a(λ − 1)) 0 −(1 − a)λ−1aλ

0 1 0
−(1 − a)λ−1aλ 0 (1 − a)λ−1(a(λ + 1) − 1)

⎞

⎠ .

Notice that the binomial series converges only for |a| < 1. However, the expression
we obtained for (G−1

0 G1)
x satisfies the properties of Sect. 2.1 and therefore, the result

for Gλ is correct for arbitrary a < 1, a �= 0. The conics Gλ are symmetric to the line
(0, 1, 0)� and touch G0,G1 in C . The figure shows, in the plane x3 = 1, the pencil
generated by the unit circle G0 and a circle G1 inside of G0 (both bold), together with
the tangent in the contact point (red).


�

Theorem 4.6 (Case 6) Let G0,G1 be two conics with two first order contact points

C0,C1. Then they generate an exponential pencil Gλ = G1

(
G−1

0 G1

)λ−1
iff G0 lies

inside of G1 or vice versa. This exponential pencil is unique, and each conic Gλ is a
member of the linear pencil gλ = λG1 + (1 − λ)G0. If G1 is inside of G0, then Gλ

and gλ have the same limit for λ → ∞, and for λ → −∞ the limit of Gλ consists of
the tangents in C0 and C1. If G0 is inside of G1 it is the other way round.

The proof will actually give some more information.
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Proof After applying a suitable projective map, we may assume that

G0 =
⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠ , G1 =
⎛

⎝
1 0 0
0 1 − μ 0
0 0 −1

⎞

⎠ , μ �= 0, μ �= 1,

(see Halbeisen and Hungerbühler 2017). Then,

A := G−1
0 G1 =

⎛

⎝
1 0 0

1 − μ 0
0 0 1

⎞

⎠ .

Like in Case 2, A has only one symmetric, real logarithm if μ < 1. This inequality is
equivalent to the fact that one conic lies inside the other, and we get

(G−1
0 G1)

x =
⎛

⎝
1 0 0

(1 − μ)x 0
0 0 1

⎞

⎠ .

In this case, we obtain as exponential pencil

G1(G
−1
0 G1)

λ−1 =
⎛

⎝
1 0 0

(1 − μ)λ 0
0 0 −1

⎞

⎠ = g(1−(1−μ)λ)/μ.

The figure shows the pencil generated by the unit circle G0 and an ellipse G1 (both
bold) together with the limits (red).


�
Theorem 4.7 (Case 7) Let G0,G1 be two conics with one intersection and one
second order contact. Then, they generate a unique exponential pencil Gλ =
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G1

(
G−1

0 G1

)λ−1
. The family Gλ has a conic E as envelope. E belongs to the linear

pencil of G2 − 3G0 − 6G1 and the double line joining the intersection point and the
second order contact point of G0 and G1. Through every exterior point of E, except
for the tangent in the contact point of G0 and G1, there pass exactly two members of
the exponential pencil Gλ.

Proof After applying a suitable projective map, we may assume that

G0 =
⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠ , G1 =
⎛

⎝
1 −μ 0

−μ 1 μ

0 μ −1

⎞

⎠ , μ �= 0

(see Halbeisen and Hungerbühler 2017). Then,

A := G−1
0 G1 =

⎛

⎝
1 −μ 0

−μ 1 μ

0 −μ 1

⎞

⎠ .

With

T =
⎛

⎝
1 0 1/μ2

0 −1/μ 0
1 0 0

⎞

⎠ , J =
⎛

⎝
1 1 0
0 1 1
0 0 1

⎞

⎠ = I +
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠

︸ ︷︷ ︸
=:α

we get G−1
0 G1 = I + TαT−1. By Culver (1966, Theorem 2), A has a unique real

logarithm, and we can use the binomic series (which, in this case, consists of only
three terms), to obtain

(G−1
0 G1)

x = (I + TαT−1)x = T
∞∑

k=0

(
x

k

)
αkT−1

=
⎛

⎝
1 + x(x − 1)μ2/2 −xμ x(1 − x)μ2/2

−xμ 1 xμ
x(x − 1)μ2/2 −xμ 1 + x(1 − x)μ2/2

⎞

⎠ ,

and finally the exponential pencil

Gλ = G1

(
G−1

0 G1

)λ−1 =
⎛

⎝
1 + λ(λ − 1)μ2/2 −λμ λ(1 − λ)μ2/2

−λμ 1 μλ

λ(1 − λ)μ2/2 μλ μ2λ(λ − 1)/2 − 1

⎞

⎠ .
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The envelope E is obtained by eliminating λ from ∂
∂λ

〈x,Gλx〉 = 0 and 〈x,Gλx〉 = 0.
One finds the conic

E =
⎛

⎝
μ2 − 8 4μ −μ2

4μ 8 −4μ
−μ2 −4μ 8 + μ2

⎞

⎠ = G2 − 3G0 − 6G1 + 16

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ .

It is then a simple calculation to check, that 〈x,Gλx〉 = 0 has exactly two solutions
λ whenever x is in the interior of E and away from the tangent in the contact point
of G0 and G1. The figure shows in the plane x3 = 1 the pencil generated by the unit
circle G0 and an ellipse G1 (both bold) together with the envelope E (blue).


�
Theorem 4.8 (Case 8) Let G0,G2 be two conics with one third order contact point

C. Then they generate a unique exponential pencil Gλ = G1

(
G−1

0 G1

)λ−1
which

coincides with the linear pencil gλ = λG1 + (1− λ)G0. The pencil Gλ together with
the tangent t in C yields a foliation of the projective space outside C. For λ → ±∞,
Gλ converges to t and C respectively.

Proof After applying a suitable projective map, we may assume that

G0 =
⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠ , G1 =
⎛

⎝
1 0 0
0 μ + 1 −μ

0 −μ μ − 1

⎞

⎠ , μ �= 0

(see Halbeisen and Hungerbühler 2017). Then,

A := G−1
0 G1 =

⎛

⎝
1 0 0
0 μ + 1 −μ

0 μ 1 − μ

⎞

⎠ .
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With

T =
⎛

⎝
0 0 1
1 1/μ 0
1 0 0

⎞

⎠ , J =
⎛

⎝
1 1 0
0 1 0
0 0 1

⎞

⎠ = I +
⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠

︸ ︷︷ ︸
=:α

we get G−1
0 G1 = I + TαT−1. Again, we have a unique real logarithm of A and

therefore, by the binomic series (which, in this case, consists of only two terms), we
get

(G−1
0 G1)

x = (I + TαT−1)x = T
∞∑

k=0

(
x

k

)
αkT−1 =

⎛

⎝
1 0 0
0 1 + xμ −xμ
0 xμ 1 − xμ

⎞

⎠ ,

and finally the exponential pencil

Gλ = G1

(
G−1

0 G1

)λ−1 =
⎛

⎝
1 0 0
0 μλ + 1 −μλ

0 −μλ μλ − 1

⎞

⎠ = gλ.

It is easy to check, that for every point P /∈ t there is exacly oneλ such that 〈P,GλP〉 =
0 The figure shows in the plane x3 = 1 the pencil generated by the unit circle G0 and
a hyperbola G1 (both bold) and the limits (red).

5 A triangle center

Starting with the circumcircle G0 and the incircle G1 of a triangle �0 = A0B0C0, we
obtain a discrete chain of conjugate conicsGn = G1(G

−1
0 G1)

n−1, for n = 0, 1, 2, . . ..
Because of Theorem 2.5, the triangle �1 joining the contact points A1, B1,C1 of the
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incircle of �0 is tangent to G2. Iteration of this construction yields a sequence of
triangles �n (see figure below) having vertices on Gn and sides tangent to Gn+1. The
corresponding contact points on Gn+1 are the vertices of�n+1. This is a chain of dual
Poncelet triangles in the sense of Halbeisen and Hungerbühler (2016).

According to Theorem 4.2, the linear and the exponental pencil of G0 and G1 have
the same limit point. Hence, the sequence of triangles �n converges together with the
Gn for n → ∞ to the dilation center X of �0: This is Triangle Center X (3513) in
the Encyclopedia of Triangle Centers [5]. This center has hereby a new interpretation.
The figure shows the situation for a triangle �0 (blue) and G0,G1 (bold) with the
limit point X (red).

G1

Δ0

G0

A0 B0

C0

A1

B1

C1

X

Since �0 is a Poncelet triangle for G0,G1, any other point A′
0 on G0 defines a

triangle �′
0 with vertices A′

0, B
′
0,C

′
0 on G0 with incircle G1. Each such triangle �′

0
generates a chain of dual Poncelet triangles with the same center X .
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