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THE STEINBART THEOREM, POLAR TRIANGLES
AND THE REVERSION MAP

NORBERT HUNGERBÜHLER

ABSTRACT. We show that the Steinbart Theorem has an highly symmetric projective gen-
eralization in the framework of polar triangles and reversion maps of conics. The gener-
alization has the additional feature that it is self-dual. This sheds new light on the original
Steinbart Theorem, in particular on its dual, and yields a new conjugation in triangles.

1. INTRODUCTION

The Steinbart Theorem is one of those geometric incidences that makes you wonder how
it could have remained hidden for millennia. In fact, the theorem was only discovered
in 2000 by the German high school student Oliver Funck at the Steinbart Gymnasium in
Duisburg. The theorem states the following:

Theorem 1.1. Let A1 A2 A3 be a triangle and P a point in the plane. The points A→
1, A→

2, A→
3 de-

note the points of tangency of the incircle C of the triangle (see Figure 1). The line AiP intersects
C in a second point A→→

i , i = 1, 2, 3. Then, the straight lines Ai A→→
i are concurrent in a point Q.

Several special cases of the theorem were already known, for example, when the point P
is the centroid of the triangle and Q its Exeter point. Humenberger lists in [7] seven such
special cases.

Already Funck observed in his original work [3] that the theorem has a natural interpre-
tation in the context of projective geometry, and formulated the corresponding version
and some consequences. Funck proved the theorem with the help of a computer algebra
system. Grinberg noted in [4], that the concurrency of the lines A→

i A
→→
i is not a necessary

condition for the concurrency of the lines Ai A→→
i , and proved an extended version of the

Steinbart Theorem. The aim of this article is to show that the Steinbart Theorem has
an highly symmetric projective generalization in the framework of polar triangles and
reversion maps of conics. This generalization has the additional nice feature that it is
self-dual.
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Figure 1. The Steinbart Theorem.

The article is organized as follows. In Section 2, we briefly describe the necessary theory
of polar triangles and the reversion map. Section 3 contains the projective generalization
of the Steinbart Theorem, and some additional features of the configuration. In Section 4
we describe some applications of the main theorem.

2. POLAR TRIANGLES AND THE REVERSION MAP

The idea of the generalization is based on three pillars. First of all notice that the Stein-
bart Theorem remains valid, if we replace the incircle by an arbitrary non-degenerate
conic C which touches the sides of the triangle. Secondly, observe that the situation in
the Steinbart Theorem is just a special case of triangles A1A2A3 and A→

1A→
2A→

3 which are
conjugate with respect to C. And thirdly, notice that the map which associates the point
A→→

i on C to the point A→
i on C has a projective extension to the whole projective plane,

namely the reversion map.

Let us now explain the three pillars more explicitly and fix the notation at the same time.

2.1. The projective plane. We will work in the standard model of the real projective
plane. The set of points P is given by RP2 = R3 \ {0}/↑, where X ↑ Y ↓ R3 \ {0} are
equivalent if X = λY for some λ ↓ R. Similarly, the set of lines B is also R3 \ {0}/ ↑,
where again g ↑ h ↓ R3 \ {0} are equivalent, if g = λh for some λ ↓ R. A point [X]
and a line [g] are incident if ↔X, g↗ = 0, where we denoted equivalence classes by square
brackets and the standard inner product in R3 by ↔·, ·↗. Since we mostly work with
representatives we will omit the square brackets in the notation of equivalence classes.

A non-degenerate conic inRP2 is given by the equation ↔X, CX↗ = 0 where C is a regular,
real, symmetric 3 ↘ 3 matrix which has eigenvalues of both signs. By abuse of notation
we will denote both, the conic and the matrix, with the same letter C. The polare line of
a point P with respect to C is given by CP. Vice versa, the pole of a line p with respect
to C is given by C≃1 p. The intersection of two lines g and h can be computed by g ↘ h,
where ↘ is the cross product in R3. Similarly, the line passing through the points X and
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Y is X ↘ Y. See, e.g., [9] for more information or a general introduction to projective
geometry.

2.2. Polar triangles. Let A→
1, A→

2, A→
3 be three points, not on the same line, and C a non-

degenerate conic. Then the polar line of A→
i is given by CA→

i, and the three polar lines CA→
i

form the polar triangle A1A2A3 of A→
1A→

2A→
3 with respect to C (see Figure 2). Vice versa,

by de La Hire’s Fundamental Theorem of poles and polars (see [8]), the triangle A→
1A→

2A→
3

is the polar triangle of A1A2A3. So, because this relation is symmetric, it is justified to call
the two triangles conjugate to each other with respect to C. Recall that by Chasles’ Polar
Triangle Theorem, conjugate triangles are centrally perspective, i.e., the lines Ai A→

i are
concurrent (see, e.g., [2, 5·61]). Moreover, conjugate triangles are also axially perspective
by Desargues’ Two-triangle Theorem (see, e.g., [2, 1·52]).

CA→
3

CA→
2

CA→
1

P

C

p

A3

A→
2

A2

A1

A→
1

A→
3

Figure 2. Chasles’ Polar Triangle Theorem.

In view of the application below, we make an addition to Chasles’ theorem.

Proposition 2.1. If A1A2 A3 and A→
1A→

2A→
3 are conjugate triangles with respect to a conic C with

perspectivity center P and perspectivity axis p, then P is the pole of p with respect to C.

Proof. Observe that by de La Hire’s Theorem the intersection of the line Ai≃1Ai+1 and
A→

i≃1A→
i+1 is the pole of the line Ai A→

i for all i. Here and below, indicies are read cyclically.
This proves the claim. ↭
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2.3. The reversion map. Let C be a non-degenerate conic and P a point not on C. The
point reversion map

ϕP : C ⇐ C, X ⇒⇐ ϕP(X),

is defined by the requirement that the points X, P, ϕP(X) are collinear, and that X ⇑=
ϕP(X) unless the line XP is a tangent of C (see Figure 3). Clearly, the point reversion
map is an involution.

C

P

X

O
Y

ϕP(X)

ϕO(Y)

Z = ϕO(Z)

Figure 3. The point reversion map on the circle C.

This point reversion has a projective extension to the whole plane RP2, again denoted
by ϕP, which can be written as

ϕP : P⇐ P, X ⇒⇐ ↔P, CP↗X ≃ 2↔X, CP↗P = MX. (2.1)

Here M is the 3 ↘ 3 matrix given by the expression in (2.1). Indeed, the three points
X, P, ϕP(X) are obviously collinear, and a short calculation shows that ↔X, CX↗ = 0 im-
plies ↔ϕP(X), CϕP(X)↗ = 0. Hence, ϕP maps points on C to points on C. Moreover,
X = ϕP(X) for X on C is equivalent to ↔X, CP↗ = 0 and this is the case if and only if P
lies on the tangent to C in X. Hence, the projective map given by (2.1) has the properties
which define the point reversion. See [1] and [6] for more information about the point
reversion map.

Geometrically the point ϕP(X) can be constructed as shown in Figure 4: Let R be a point
on C, not on the line XP. Then the line g through R and X intersects C in a second point
S. The line through ϕP(R) and ϕP(S) intersects the line XP in the point ϕP(X), and this
point does not depend on the choice of R.

If A→
1 A→

2 A→
3 is a triangle, C a non-degenerate conic and P a point, we will call A→→

1 A→→
2 A→→

3 ,
where A→→

i = ϕP(A→
i), the point reversed triangle of A→

1A→
2A→

3 with respect to P. Vice versa,
because the reversion map is an involution, the triangle A→

1A→
2A→

3 is the point reversed
triangle of A→→

1 A→→
2 A→→

3 . It is therefore justified to call the two triangles point reversed to each
other. Since point reversed triangles are centrally perspective by construction, they are
also axially perspective. Similarly to Proposion 2.1 we have the following property:

Proposition 2.2. If A→
1 A→

2A→
3 and A→→

1 A→→
2 A→→

3 are point reversed triangles with respect to a conic
C, with perspectivity center P and perspectivity axis p, then P is the pole of p with respect to C
(see Figure 5).
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Figure 4. Construction of the reversion point ϕP(X).

Proof. By applying a suitable projective map we may assume that C is a circle and either
P its center, or P a point at infinity. In the first case, the map ϕP is just the reflection about
the point P and hence the perspectivity axis is the ideal line, which proves the claim. In
the other case, ϕ is the reflection about the polar line ω of P through the center of the
circle. Thus, the perspectivity axis is ω and we are also done in this case. ↭

C

A→
1

A→
3

A→
2

P

A→→
3

A→→
2

A→→
1

p

Figure 5. Point reversed triangles with respect to P are axially perspective with respect to
the polar line p.

The point reversion ϕP maps points to points. Since it is a collineation it also induces a
map ϕ̄P which maps lines to lines, and which is given by the inverse transposed matrix
M≃t from (2.1).

On the other hand, we can also define the dual of the point reversion map: This is the
map ϕp for a given line p which maps the line x to the line ϕp(x) with respect to the

38



THE STEINBART THEOREM, POLAR TRIANGLES AND THE REVERSION MAP

conic C. We call ϕp the line reversion map. It is given by the equation

ϕp : B⇐ B, x ⇒⇐ ↔p, C≃1 p↗x ≃ 2↔x, C≃1 p↗p.

It is instructive to interpret the line reversion geometrically by dualizing the construction
in Figure 4 (see Figure 6): Select an exterior point E of C on the line x, and draw the
tangents to C. These tangents intersect p in the points F and G. From F and G draw the
second tangent to C. Their intersection is a point H. Then. ϕp(x) is the line JH, where J
is the intersection of x and p. Notice that this line does not depend on the initial choice
of E.

C

p

x

E

F

G

J

H

ϕp(x)

Figure 6. Construction of the line reverse ϕp(x) of the line x with respect to the line p.

Observe that ϕp : B ⇐ B induces a map ϕ̄p : P ⇐ P by mapping the intersection of
lines to the intersection of the image lines. The following proposition links the variants
of the reversion maps:

Proposition 2.3. Let P be the pole of the line p with respect to the conic C. Then the map
ϕP : P⇐ P agrees with the map ϕ̄p : P⇐ P, and vice versa, the map ϕp : B⇐ B agrees with
the map ϕ̄P : B⇐ B.

Proof. Like in the proof of Proposition 2.2 it suffices to consider the case of a circle with
either P its center, or P at infinity. In both situations, the claim is easily checked. ↭

Since ϕP is a projective map that leaves C invariant the following ist true: Let Q be a
point and q its polar line with respect to the conic C. Then the line ϕP(q) is the polar line
of ϕP(Q) with respect to C. This leads immediately to the following statement.

Proposition 2.4. If A1 A2A3 is the polar triangle of A→
1A→

2A→
3, and A→→

1 A→→
2 A→→

3 is the point reversed
triangle of A→

1 A→
2A→

3 with respect to P, then the polar triangle A→→→
1 , A→→→

2 , A→→→
3 of A→→

1 A→→
2 A→→

3 is the
point reversed triangle of A1A2 A3 with respect to P.

With this preparation we are now ready to formulate the projective generalization of the
Steinbart Theorem.
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3. THE PROJECTIVE GENERALIZATION OF THE STEINBART THEOREM

We set the stage as follows.

Proposition 3.1. Let C be non-degenerate conic and P a point not on C. Let ⇓→ = A→
1A→

2A→
3 and

⇓→→ = A→→
1 A→→

2 A→→
3 be point reversed triangles with respect to P. Moreover, let ⇓ = A1A2A3 be

the polar triangle of ⇓→, and ⇓→→→ = A→→→
1 A→→→

2 A→→→
3 be the polar triangle of ⇓→→. Then the following

statements hold.

(a) The triangles ⇓ and ⇓→ are point perspective with respect to a point Q and axially perspective
with respect to its polar line q.

(b) The triangles ⇓→→ and ⇓→→→ are point perspective with respect to a point R and axially per-
spective with respect to its polar line r.

(c) R = ϕP(Q) and r = ϕp(q).
(d) The triangles ⇓→ and ⇓→→ are point perspective with respect to P and axially perspective with

respect to its polar line p.
(e) The triangles ⇓ and ⇓→→→ are point perspective with respect to P and axially perspective with

respect to its polar line p.
(f) The points A1, A2, A3, A→→→

1 , A→→→
2 , A→→→

3 lie on a conic.
(g) The points A→

1, A→
2, A→

3, A→→
1 , A→→

2 , A→→
3 lie on a conic.

Proof. The statements (a) and (b) follow directly from Chasles’ Theorem together with
Proposition 2.1. (c) follows from the fact that ϕP maps ⇓→ to ⇓→→, and, by Proposition 2.4,
⇓ to ⇓→→→. The statements (d) and (e) follow from Proposition 2.1. For (f) we argue as
follows: Since ⇓→ and ⇓→→ are perspective, it follows from Biranchon’s Theorem that
the points A→

1, A→→
2 , A→

3, A→→
1 , A→

2, A→→
3 form a hexagon which is circumscribed around a conic

D. Therefore the vertices of the polar hexagon A1, A→→→
2 , A3, A→→→

1 , A2, A→→→
3 are points on the

conjugate conic E of D with respect to C (see [5]). The same argument applies when we
start with the triangle ⇓ and ⇓→→→, which gives (g). ↭

The miracle which happens now is that also ⇓ and ⇓→→ are perspective, and the same is
true for ⇓→ and ⇓→→→.

Theorem 3.1 (Projective generalization of the Steinbart Theorem). Let C be non-degenerate
conic and P a point not on C. Let ⇓→ = A→

1A→
2A→

3 and ⇓→→ = A→→
1 A→→

2 A→→
3 be point reversed

triangles with respect to the point P, or equivalently, line reversed with respect to its polar line
p. Let ⇓ = A1A2 A3 be the polar triangle of ⇓→, and let A→→→

1 A→→→
2 A→→→

3 be the polar triangle of ⇓→→.
Then the following statements hold (see Figure 7).

(a) The triangles ⇓ and ⇓→→ are point perspective with respect to a point U, and axially perspec-
tive with respect to its polar line u.

(b) The triangles ⇓→ and ⇓→→→ are point perspective with respect to a point V, and axially per-
spective with respect to its polar line v.

(c) V = ϕP(U) and v = ϕp(u).
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The relations in the Propositions 3.1 and Theorem 3.1 are visualized in the following
schema, the Steinbart relations of Theorem 3.1 are indicated in red:
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Proof. We start with the points A→
i and denote their polar lines by a→i := CA→

i. Then the
points Ai are given by Ai = a→i≃1 ↘ a→i+1, where ↘ is the cross product in R3. Here and
below, indicies are read cyclically. For the points A→→

i we can write A→→
i = MA→

i, where M
is the matrix given in (2.1). The three lines Ai A→→

i = Ai ↘ A→→
i , i = 1, 2, 3, are concurrent

iff d = det(A1 ↘ A→→
1 , A2 ↘ A→→

2 , A3 ↘ A→→
3 ) = 0. Inserting the expressions for Ai and A→→

i we
have

d = det
(
(a→3 ↘ a→2)↘ MA→

1, (a→1 ↘ a→3)↘ MA→
2, (a→2 ↘ a→1)↘ MA→

3
)
.

By expanding the triple cross product we find for the columns ci in this matrix

ci = a→i+1↔MA→
i, a→i≃1↗ ≃ a→i≃1↔a→i+1, MA→

i↗.
Now we use the linearity of the determinant to expand d. Observe that all terms which
correspond to determinants having two columns which are parallel to the same vector
a→i are zero. We are left with

d = det(a→2↔MA→
1, a→3↗, a→3↔MA→

2, a→1↗, a→1↔MA→
3, a→2↗)

≃ det(a→3↔MA→
1, a→2↗, a1↔MA→

2, a→3↗, a→2↔MA→
3, a→1↗).

Therefore we have d = 0, if

↔MA→
1, a→3↗↔MA→

2, a→1↗↔MA→
3, a→2↗ = ↔MA→

1, a→2↗↔MA→
2, a→3↗↔MA→

3, a→1↗.
Indeed, we have

↔MA→
i, a→j↗ = ↔MA→

j, a→i↗,
since by (2.1)

↔MA→
i, a→j↗ = ↔↔P, CP↗A→

i ≃ 2↔A→
i, CP↗P, CA→

j↗ = ↔P, CP↗↔A→
i, CA→

j↗ ≃ 2↔A→
i, CP↗↔P, CA→

j↗
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and
↔MA→

j, a→i↗ = ↔↔P, CP↗A→
j ≃ 2↔A→

j, CP↗P, CA→
i↗ = ↔P, CP↗↔A→

j, CA→
i↗ ≃ 2↔A→

j, CP↗↔P, CA→
i↗.

Both terms agree since C is symmetric. This shows statement (a). By exchanging the role
of ⇓→ and ⇓→→ we get in the same way the statement (b). Statement (c) is then evident. ↭

C

P
A→

1

A→→
1

A→
2

A→→
2

A→
3

A→→
3

A1

A2

A3

A→→→
1

A→→→
3

A→→→
2

UV

Figure 7. The projective generalization of the Steinbart Theorem.

4. SOME CONSEQUENCES OF THE PROJECTIVE GENERALIZATION OF THE STEINBART
THEOREM

Theorem 3.1 implies immediately that the Steinbart Theorem also holds, mutatis mutan-
dis, for each excircle instead of the incircle.

Corollary 4.1 (The Steinbart Theorem for the excircle). Let A1A2A3 be a triangle and P a
point in the plane. The points A→

1, A→
2, A→

3 denote the points of tangency of the excircle C of the
triangle (see Figure 8). The line AiP intersects C in a second point A→→

i , i = 1, 2, 3. Then, the
straight lines Ai A→→

i are concurrent in a point Q.

Incidence relations that are self-dual, like, e.g., Desargues’ Theorem, are particularly
appealing. The main Theorem 3.1 has this nice property.
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Proposition 4.1. The statement of Theorem 3.1 is self-dual.

Proof. The statement that two triangles are conjugate with respect to a conic is a self-dual
statement. Similarly, the statement that two triangles are point reverse is dual to the
statement, that the two triangles are line reverse. Hence, when we dualize Theorem 3.1
we get again the same statement. ↭

In contrast, the original Theorem 1.1 is not self-dual. Its dual formulation reads as fol-
lows.

Corollary 4.2 (The dual form of the Steinbart Theorem 1.1). Let the lines A1A2A3 form
a triangle with circumcircle C, and let P be a line in the plane. The tangents in the vertices of
the triangle A1 A2A3 are A→

1A→
2 A→

3, numbered in the obvious way (see Figure 9). For each i, we
draw the other tangent A→→

i to C from the intersection of the line A→
i with the line P. Then the

intersections of Ai and A→→
i are collinear on a line Q.

A→
3

CA→
1

A→
2

P

A→→
3

A→→
1

A→→
2

A1 A2

A3

Q

Figure 8. The Steinbart Theorem for the excircle.

However, in the light of Theorem 3.1, we can interpret the statement in Corollary 4.2
so that its true nature becomes apparent. Indeed, observe that the triangles with sides
A→

1 A→
2 A→

3 and A1 A2A3 are polar triangles. The triangles A→
1A→

2A→
3 and A→→

1 A→→
2 A→→

3 are line
reverse with respect to the line P and therefore point reverse with respect to the pole
of P (see the dotted lines in Figure 9). Hence, the triangles A1A2A3 and A→→

1 A→→
2 A→→

3 are
axially perspective with respect to the line Q and therefore also point perspective (see
the dashed lines in Figure 9).

As a last remark, we want to point out that, in Theorem 1.1, the map with associates the
point Q to the point P is not an involution. However, in Theorem 3.1, the map which
associates the point U to the point V is an involution (see Figure 7). Hence we may
consider this map as a new conjugation in a triangle A1A2A3. This conjugation has the
nice property, that it leaves the conic C invariant.
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Figure 9. The dual of the Steinbart Theorem.
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