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Reconstruction of Weighted Graphs by their Spectrum
LORENZ HALBEISEN AND NORBERT HUNGERBÜHLER

It will be shown that for almost all weights one can reconstruct a weighted graph from its spectrum.
This result is the opposite to the well-known theorem of Botti and Merris which states that reconstruc-
tion of non-weighted graphs is, in general, impossible since almost all (non-weighted) trees share their
spectrum with another non-isomorphic tree.
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1. NOTATIONS AND INTRODUCTION

A weighted graph G is a pair (A,M), where A = (Ai j ) is a symmetric real n ⇥ n matrix
with Ai i = 0, called an adjacency matrix, and where the mass matrix M = diag(m1, . . . ,mn)
is a real diagonal n⇥ n matrix. The valence matrix D of G is defined to be the diagonal n⇥ n
matrix with

Di i =

nX

j=1
Ai j =: di .

If all masses mi are equal to 1 and if Ai j 2 {0, 1} for all i, j , then G is just a simple graph
and D is its vertex degree matrix. If the masses mi are positive and all Ai j � 0, we consider
G as a model for a molecule consisting of n atoms with weights mi and with Ai j being the
elasticity constant of the chemical binding between mi and m j ; that is, if vi (t) denotes the
scalar deviation of mi at time t from its normal position, we have for every i

�mi v̈i =

nX

j=1
Ai j (vi � v j ) = viDi i �

nX

j=1
Ai jv j .

Hence, an eigenvibration v j (t) = u jei!t , j = 1, . . . , n, of the molecule satisfies (in matrix
notation)

!2Mu = Du � Au,

where u is the vector (u1, . . . , un). In other words, the negative squares �!2 = � of the
eigenfrequencies of the molecule are the spectrum of the (generalized) eigenvalue problem

det(A � D � �M) = 0.

Alternatively, we could regard this as a discrete model of an inhomogeneous drum consisting
of n vertices bearing weightsmi and with Ai j being the elasticity constant betweenmi andm j .
Such a discrete model can, for example, arise from discretizing the corresponding continuous
problem for a numerical treatment.
Let us have a quick look at the case of simple graphs when all mi and all non-zero Ai j

equal 1. The adjacency spectrum of a simple graph G, i.e., the eigenvalue spectrum of the
adjacency matrix A, is widely studied (see e.g., [3] as a main reference). Non-isomorphic
graphs (i.e., graphs whose adjacency matrices are not permutation similar) affording the same
(adjacency) characteristic polynomial are called cospectral. Schwenk showed in [16] that al-
most all trees are cospectral. On the other hand, the operator L = L(G) := A � D is the
so-called Laplace or Kirchhoff operator of G (Laplace operator because it is the discrete ana-
logue of the Laplace differential operator, and Kirchhoff operator since L first occurred in the
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well-known matrix-tree theorem of G. Kirchhoff). In how far the spectrum of L reflects the
spectral properties of molecules is discussed in [4, 5] and [8]. The relation between a simple
graph and its Laplace spectrum is studied, e.g., in [6, 7, 13] and [15]. As a general reference
for recent results on spectral graph theory see [2]. One of the most striking results is the theo-
rem of Botti and Merris (see [1]) which generalizes the results of Schwenk [16], McKay [12]
and Turner [17].

THEOREM 1 (BOTTI–MERRIS). Let tn be the number of non-isomorphic trees on n ver-
tices and sn the number of such trees T for which there exists a non-isomorphic tree ˜T such
that the polynomial identities

d� (yA(T ) + zD(T ) � x I ) ⌘ d� (yA( ˜T ) + zD( ˜T ) � x I )

in the three variables x, y and z hold, simultaneously, for every irreducible character � of the
symmetric group Sn . Then limn!1

sn/tn = 1.

Here, I is the identity and d� denotes the immanent

d� (B) =

X

p2Sn

�(p)
nY

i=1
bi p(i), (1)

where B = (bi j ) is an n ⇥ n matrix (e.g., for � = ", the alternating character, d� = det).
Techniques which are based on Sunada’s trace theorem have recently allowed the generation

of isospectral simple graphs which are not necessarily trees, see [9].
The results in [1] and [9] seem to indicate that, in general, it is impossible to reconstruct

the structure of a molecule from its spectrum. However, we will see below that the case of
weighted graphs offers the possibility of a reconstruction.
We will always identify the vector m 2 Rn with the mass matrix M(m) = diag(m). For

given m 2 Rn and a countable set A ⇢ R we denote by GA,M(m) the set of weighted graphs
G = (A,M(m)) with A = (Ai j ), 0  Ai j 2 A, and we will say G is a graph over A and
M(m).
In this paper we look at the following problem: given m = (m1, . . . ,mn) 2 Rn

+
, A ⇢ R

countable (e.g., A = {0, 1} in the simplest case) and the Laplace spectrum {x 2 R : det(L �

xM(m)) = 0} of a graph (A,M(m)) 2 GA,M(m); can you then compute the adjacency matrix
A from this information? The naive answer would be just to compare the spectrum of every
possible graph with the given spectrum. However, first, this only works for a finite set A,
second, the number of simple graphs on n vertices grows superexponentially in n and hence
the method is not practicable, and third, it does not answer the question for which set of mass
matrices (depending on A) the map A 7! {x 2 R : det(L � xM(m)) = 0} is injective. The
aim of this paper is to discuss conditions on the mass matrix M(m) such that the answer to this
question is affirmative and to describe reconstruction algorithms. In Section 2 we will discuss
the case A = {0, 1} with a very strong growth condition on the masses mi which implies that
reconstruction of the graph from its spectrum is possible, and in Section 4 we will consider
a general countable set A and an algebraic condition which shows that for almost all mass
matrices (in a sense that will be made precise) reconstruction of the adjacency matrix A is
possible.
The conditions we give for reconstructability of weighted graphs are sufficient, but certainly

far from being necessary. Therefore—although it seems not to be realistic to apply our results
directly to real molecules, since the masses of the atoms of a molecule might not satisfy
the growth or the algebraic condition we use—the given reconstruction results at least show



Reconstruction of weighted graphs by their spectrum 643

that reconstructability is a phenomenon that does occur for weighted graphs. Thus, whether
in concrete situations reconstruction is possible or not may be a matter of a more detailed
analysis adapted to the case at hand.

2. THE LAPLACE SPECTRUM OF WEIGHTED GRAPHS

In this section all non-zero Ai j are assumed to be 1, i.e., we consider the case A = {0, 1},
and we ask for a condition on the mass matrix M which allows us to decide which masses are
linked in a graph whose Laplace spectrum is known.

THEOREM 2. There exist mass matrices M0 = diag(m1, . . . ,mn) such that the following
is true: let G = (A,M) and ˜G = ( ˜A, ˜M) be weighted graphs over A = {0, 1} such that M
and ˜M are permutation similar to M0, then

det(L(G) � xM) ⌘ det(L( ˜G) � x ˜M) (2)

holds if and only if G and ˜G are isomorphic graphs, i.e., A = P ˜AP�1 and M = P ˜MP�1

holds for a permutation matrix P. A possible choice is mi = n(2i ).

REMARK. The proof will be constructive and provide an ‘algorithm’ to reconstruct the
adjacency matrix A from the roots of the polynomial det(L � xM).

The proof of Theorem 2 is based upon the following two elementary lemmas.

LEMMA 1. Let q1, . . . , qn be a sequence of real numbers of at least geometric growth with
constant s > 1, i.e., qi � sqi�1 for i = 2, . . . , n, and q1 > 0. Then

nX

i=1
�iqi =

nX

i=1

˜�iqi (3)

implies �i =
˜�i for i = 1, . . . , n, provided that all �i 2 {0, 1, . . . , bs � 1c}.

PROOF. We proceed by induction: for n = 1 the assertion is trivial. On the other hand,
using (3) we have for n > 1

(�n �
˜�n)qn =

n�1X

i=1
( ˜�i � �i )qi (4)

 (s � 1)
n�1X

i=1
qi

 (s � 1)
n�1X

i=1
qn

1
sn�i

= qn
✓
1�

1
sn�1

◆

= qn"

for an " < 1. We may assume that �n �
˜�n and hence we obtain from (4)

0  �n �
˜�n < 1.

Thus �n =
˜�n and the assertion follows by induction. 2
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The second lemma we need in the proof of Theorem 2 is the following.

LEMMA 2. Letµi = ⌫(2i ) for some ⌫ > 0 and for i = 1, . . . , n. Then the set of the numbers

qi j =

1
µiµ j

nY

k=1
µk

with i 6= j rearranged as a growing sequence has at least geometric growth with constant ⌫.

PROOF. Consider a =

qi j
qlm for {i, j} 6= {l,m}. We have a =

µlµm
µiµ j

= ⌫2
l
+2m�2i�2 j and

therefore the proof is complete if we can show that the exponent 2l + 2m � 2i � 2 j 6= 0.
However, this follows from Lemma 1 since 2l + 2m = 2i + 2 j would imply {l,m} = {i, j}
which contradicts the assumption. 2

Now we give the proof of Theorem 2.

PROOF. We may assume that the vertex sets of G and ˜G are already renumbered in such a
way that M =

˜M = M0. Using (1) we easily find the following expansion

det(L � xM) =

���������

�d1 � xm1 A12 A13 . . . A1n
A21 �d2 � xm2 A23 . . . A2n
...

...
. . .

...

An1 An2 . . . . . . �dn � xmn

���������

(5)

= (�1)nxn
nY

i=1
mi + (�1)nxn�1

nX

i=1
di
Y

j 6=i
m j

+(�1)nxn�2
X

i< j
(did j � A2i j )

Y

k /2{i, j}
mk + · · · + det(L).

Now we use expansion (5) in identity (2). Comparing the coefficients of xn�1 on both sides
we conclude by Lemma 1 that

di =
˜di (i = 1, . . . , n) (6)

since by our assumption on the massesmi the ordered set of numbers qi =

Q
j 6=i m j is at least

of geometric growth with constant n and di 2 {0, 1, . . . , n � 1}. Note that by the theorem of
Botti and Merris this cannot yet imply that the graphs G and ˜G are isomorphic.
Comparing the coefficients of xn�2 and using (6) we obtain

X

i< j
Ai j

Y

k /2{i, j}
mk =

X

i< j

˜Ai j
Y

k /2{i, j}
mk .

The numbers qi j =

Q
k /2{i, j} mk obviously satisfy the hypothesis of Lemma 2 with ⌫ = n and

hence we conclude (by applying Lemma 1 once more with s = 2) that Ai j =
˜Ai j and the

proof is complete. 2

Up to now, we have considered two graphs as isospectral if they share the polynomial
det(L � xM), i.e., the eigenvalues of both graphs coincide counted with multiplicity. Now
we will show that even if we only require that two graphs have the same spectrum as sets they
are isomorphic.
Let us consider a connected weighted graph G with masses mi = n(2i ) as in Theorem 2.

Then the following proposition claims that the eigenvalues of the Laplace spectrum of G are
simple.
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PROPOSITION 1. Suppose A = {0, 1} and let G 2 GA,M(m) be a connected weighted
graph with masses mi = n(2i ), i = 1, . . . , n. Then the roots of the characteristic polynomial
det(L � xM(m)) are simple.

PROOF. Let p(x) = (�1)n det(L � xM) = anxn + · · · + a2x2 + a1x + a0. Since all roots
�i = �!2i of p are negative real numbers, we have

ak � 0 for k = 0, . . . , n. (7)

From (1) we obtain for k = 0, . . . , n

ak =

X

|I |=k
det(L I )

Y

j2I
m j , (8)

where the sum is taken over all ordered subsets I of {1, . . . , n} of cardinality k and where L I
denotes the matrix obtained from L by deleting all rows and columns having a number in I .
Of course, since the sum of the rows in L is zero, a0 = det(L) = 0.
Now, observe first that

| det(L I )|  nn�k (9)

for |I | = k. This follows from the fact that every column of L I represents a vector of length
at most n. On the other hand, for 1  |I | < n we have

1  | det(L I )| (10)

since the graphs under consideration are assumed to be connected, which implies that the
matrices L I are strongly diagonal dominated.
For simplicity we assume mi = n(3i ) in the proceeding of the proof. The arguments for

the case mi = n(2i ) are similar but more terms have to be taken into consideration. In or-
der to obtain an estimate for the coefficients ak we proceed as follows: the largest term inP

|I |=k
Q

j2I m j is obviously 0k :=

Qn
j=n�k+1 m j . All other terms are smaller or equal to

�k := mn�k
Qn

j=n�k+2m j . The quotient is 0k
�k

= m2n�k . Since the total number of terms in
the sum is

�n
k
�
we obtain from (8)–(10) that

 

1� nn�k
✓
n
k

◆
1

m2n�k

! nY

j=n�k+1
m j < |ak | <

 

1+

✓
n
k

◆
1

m2n�k

!

nn�k
nY

j=n�k+1
m j . (11)

An elementary calculation shows that for n � 1 and k = 1, . . . , n

nn�k
✓
n
k

◆
1

m2n�k


1
n2

. (12)

Inserting (12) in (11) yields
✓
1�

1
n2

◆ nY

j=n�k+1
m j < |ak | <

✓
nn�k +

1
n2

◆ nY

j=n�k+1
m j . (13)

Using (13) we obtain that for k = 2, . . . , n � 1

a2k � 4ak�1ak+1 > 0 (14)

provided that n � 3 (the case n = 2 is easily handled separately). Now the claim follows from
the criterion of Kurtz on distinct roots of polynomials (see [11]). 2
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Combining Theorem 2 and Proposition 1 we obtain the following theorem as a corollary.

THEOREM 3. There exist mass matrices M0 such that the following is true: let G = (A,M)

and ˜G = ( ˜A, ˜M) be connected graphs over A = {0, 1} such that M and ˜M are permutation
similar to M0. Then G and ˜G are isomorphic if and only if the Laplace spectrum of G and ˜G
coincide as sets. A possible choice is mi = n(2i ), where n is the number of masses.
PROOF. According to Proposition 1 the Laplace spectrum of both graphs consists of simple

eigenvalues. Hence, by Viëta’s theorem, we conclude that det(L(G) � xM) ⌘ µ det(L( ˜G)

�x ˜M) for someµ 6= 0. On the other hand, the coefficient of xn is (�1)n
Qn

i=1 mi in det(L(G)

�xM) and (�1)n
Qn

i=1 m̃i in det(L( ˜G) �x ˜M), which for both cases is the same number since
the mass matrices of G and ˜G are permutation similar. Hence µ = 1 and the assertion follows
from Theorem 2. 2

ALGORITHMIC REMARK. If one starts from the spectrum, the reconstruction algorithm
works as follows. First, compute the polynomial µ det(L(G) � xM) by Viëta’s theorem and
normalize it such that the coefficient of xn is (�1)n

Qn
i=1mi . Then find the valence matrix

D using the coefficient of xn�1 as described in the proof of Theorem 2. Finally, use this to
compute the adjacency matrix A from the coefficient of xn�2. (Note that the proof of Lemma 1
can be used to determine recursively the values of the �i from the value of the sum

Pn
i=1 �iqi .)

Inspection of the proof of Theorem 3 shows that the set of masses m 2 Rn , for which recon-
struction is possible, contains a large open set (all sequences mi which grow ‘fast enough’).
However, the set of masses for which reconstruction is possible also has a part with a fine
algebraic structure, as we will see in the next section. There, we consider a general count-
able set A of possible values of elasticity constants and impose algebraic conditions on the
masses to show that for almost all mass matrices, the weighted adjacency matrix of a graph is
determined by its Laplace spectrum.

3. p-INDEPENDENT REALS

In order to simplify the formulas, we use a multi-index notation: for i = (i1, . . . , in) 2 Nn
0

we write |i | := max(i1, . . . , in) and for m = (m1, . . . ,mn) 2 Rn we define mi
:=

Qn
k=1 m

ik
k .

Let Q be a set of real numbers and p 2 N0. We say that m 2 Rn is p-independent over Q
if the following implication holds:

X

i2Nn
0 ,|i |p

qimi
= 0 and qi 2 Q for all i 2 Nn

0, |i |  p

H) qi = 0 for all i 2 Nn
0, |i |  p. (15)

Note that the set {m1, . . . ,mn} ✓ R is algebraically independent over Q if and only if m =

(m1, . . . ,mn) 2 Rn is p-independent over Q for every p 2 N0. Thus, the notion of p-
independence is weaker than the notion of algebraic independence. For example, 3p3 and 3p5
are 2-independent but not algebraically independent over Q.

LEMMA 3. If Q ⇢ R is countable and p 2 N0, then the set {m 2 Rn
: m not p-independent

over Q} is a meagre and Lebesgue measure zero set in Rn .

PROOF. For a fixed m = (m1, . . . ,mn�1) 2 Rn�1 let Fm be the set of all not identically
vanishing polynomials f (x) with coefficients in Q [ {m1, . . . ,mn�1} of degree at most p. As
the set Q [ {m1, . . . ,mn�1} is countable and p is finite, the set

N (m) := {x 2 R : f 2 Fm ^ f (x) = 0}
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is countable. Hence, for every m 2 Rn�1, the set N (m) is a meagre and Lebesgue measure
zero set in R and by the theorems of Kuratowski–Ulam and Fubini (see, e.g., [14] or [10]) we
find that the set {m 2 Rn

: m not p-independent over Q} is a meagre and Lebesgue measure
zero set in Rn . 2

Remember that there exist meagre sets which do not have Lebesgue measure zero and vice
versa. Moreover, one can cover the real line with a meagre set and a set of Lebesgue measure
zero.

4. THE RECONSTRUCTION THEOREM

In this section let C denote an arbitrary but fixed set of countably many real numbers. Then
A = Q[C], the smallest field containing C and the rational numbers, is also countable. We
show that if the set of masses m 2 Rn

+
fulfils a suitable algebraic condition with respect to

the setA, then the adjacency matrix A(G) of a graph in GA,M(m) is determined by its Laplace
spectrum {x 2 R : det(L(G) � xM(m)) = 0}. In particular, we will see that the set of masses
m 2 Rn

+
for which reconstruction is not possible is a meagre and Lebesgue measure zero

set in Rn . Remember that for m 2 Rn
+
, M(m) = diag(m), and that GA,M(m) is the set of all

weighted graphs G = (A,M(m)) with A = (Ai j ) and 0  Ai j 2 A.

THEOREM 4. Let m 2 Rn
+
be 1-independent over Q[C], and let G = (A,M) and ˜G =

( ˜A, ˜M) be graphs over A = Q[C] of order n such that M and ˜M are permutation similar to
M(m). Then G and ˜G are isomorphic if and only if their characteristic polynomials coincide,
i.e., if det(L(G) � xM) ⌘ det(L( ˜G) � x ˜M).

PROOF. It is easy to see that if G and ˜G are isomorphic, then their characteristic polyno-
mials coincide.
For the opposite implication we may assume that the vertex sets of G and ˜G are already

renumbered such that M =
˜M = M(m). We recall that p(x) = (�1)n det(L(G) � xM) =

anxn + · · · + a2x2 + a1x + a0 with a0 = 0 and with an�1 =

Pn
i=1 di

Q
j 6=i m j . If p(x) and

p̃(x) coincide we have in particular
Pn

i=1 di
Q

j 6=i m j =

Pn
i=1 ˜di

Q
j 6=i m j , hence

Pn
i=1(di�

˜di )
Q

j 6=i m j = 0, and because m is 1-independent over A, we have di =
˜di for 1  i  n.

Thus, the valence matrix is determined by the coefficient an�1. Comparing the coefficient
an�2 =

P
i< j (did j � A2i j )

Q
k 62{i, j} mk of xn�2, and using again that m is 1-independent over

A and di =
˜di , we obtain Ai j =

˜Ai j � 0 and the proof is complete. 2

As in Section 2 in the case A = {0, 1}, it turns out that the roots of the polynomial
det(L(G) � xM) are simple, provided the mass matrix is well chosen. In order to prepare
the proof, we need the following two lemmas.

LEMMA 4. Suppose m = (m1, . . . ,mn) 2 Rn is nq-independent over a subfield K of the
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real numbers and let

p1(x1, . . . , xn) :=

nX

i=1
ci xi

p2(x1, . . . , xn) :=

X

1i1<i2n
ci1i2xi1xi2

p3(x1, . . . , xn) :=

X

1i1<i2<i3n
ci1i2i3xi1xi2xi3

...

pn(x1, . . . , xn) := c123...nx1x2 . . . xn

be polynomials with coefficients ci1...i j 2 K \ {0}. Then, (p1(m1, . . . ,mn), . . . , pn(m1, . . . ,
mn)) 2 Rn is q-independent over K .

PROOF. Let F be a polynomial in n variables with coefficients in K and with maximal
degree less than or equal to q. The maximal degree of F is defined by

max deg F := max
1in

degt F(x1, . . . , t xi , . . . , xn),

where degt is the usual polynomial degree with respect to the variable t . We assume that F is
not the zero polynomial. Now, let us consider the terms in the expression

X := F(p1(m1, . . . ,mn), . . . , pn(m1, . . . ,mn))

after expanding all products but before eliminating terms which cancel. We order the m-
monomials in X according to the lexicographical order relation. For example, m21m

0
2m

7
3 <

m21m
1
2m

1
3. This ordering is compatible with multiplication of the monomials. A lexicographi-

cally largest m-monomial in X appears while expanding a term

pb11 pb22 . . . pbnn =

 nX

i=1
ci xi

!b1 0

@
X

1i1<i2n
ci1i2xi1xi2

1

A
b2

· · · · · (c123...nx1x2 . . . xn)bn

(where all exponents bi  q) and is, apparently, the monomial

mb1+···+bn
1 mb2+···+bn

2 . . .mbn
n

(and all exponents here are less than or equal to nq). By inspection of this last expression
it is clear that the exponent (b1, . . . , bn) is determined by the lexicographically largest m-
monomial in X which therefore cannot cancel with any other (largest) m-monomial in X .
Now we assume by contradiction that F

�
p1(m1, . . . ,mn), . . . , pn(m1, . . . ,mn)

�
= 0. Since

all appearing m-monomials have maximal degree less than or equal to nq, it follows that all
coefficients of the m-monomials must vanish (because (m1, . . . ,mn) is assumed to be nq-
independent over K ). This contradicts the fact that the coefficient of the lexicographically
largest m-monomial does not vanish. 2

LEMMA 5. If p is a polynomial of degree n � 2 such that the set of its coefficients is
(n2 � 2n + 2)-independent over a subfield K of the real numbers, then p has only simple
roots.
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PROOF. The polynomial p has a multiple root if and only if the greatest common divisor
of p and its derivative p0 is non-trivial, i.e., if it is a polynomial of degree strictly larger than
zero. The greatest common divisor of two polynomials can be determined by the euclidean
algorithm. Performing the euclidean algorithm with p and p0 and computing the polynomial
remainders in each step, it is easy to see that the conditions that p has a multiple root are
polynomial equations in the coefficients of p of degree less than or equal to n2 � 2n + 2
and with integer coefficients. Since the coefficients of p are supposed to be (n2 � 2n + 2)-
independent over K � Q, the claim follows. 2

THEOREM 5. Let m 2 Rn
+
be n(n2 � 2n+ 2)-independent over Q[C] and let G = (A,M)

be a connected graph over A = Q[C] of order n. Then det(L(G) � xM(m)) has only simple
roots.

PROOF. Let p(x) = anxn +an�1xn�1+· · ·+a1x1 be as in the proof of Theorem 4. Recall
that

ak =

X

|I |=k
det(L I )

Y

j2I
m j

and that det(L I ) 2 A \ {0}, since the graph under consideration is supposed to be connected.
Thus, by Lemma 4, we find that (a1, . . . , an) is (n2 � 2n + 2)-independent over A and the
claim follows from Lemma 5. 2

Combining Theorem 4 and Theorem 5 we obtain the following theorem.

THEOREM 6. Let C ⇢ R be countable and A = Q[C]. Let m 2 Rn
+
be n(n2 � 2n + 2)-

independent over A, and let G = (A,M) and ˜G = ( ˜A, ˜M) be graphs over A of order n such
that M and ˜M are permutation similar to M(m). Then G and ˜G are isomorphic if and only if
their Laplace spectra agree, provided that at least one of the graphs G and ˜G is connected. In
particular, the set of masses m 2 Rn

+
for which reconstruction is not possible is meagre and

has Lebesgue measure zero.

PROOF. Let N ⇢ Rn be the set of all m 2 Rn which are not n(n2 � 2n + 2)-independent
over Q[C]. Then, by Lemma 3, we have that N is meagre and has Lebesgue measure zero.
We may assume without loss of generality that G is connected. By Theorem 5 we have that
the roots of det(L(G) � xM(m)) are all simple. Hence, since the spectra of G and ˜G agree,
the roots of det(L( ˜G) � x ˜M(m)) must be simple as well, and the characteristic polynomials
of both graphs coincide. Thus, by Theorem 4, the graphs are isomorphic. 2
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