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ABSTRACT

We give necessary and sufficient conditions, both algebraic and geometric, for a quadrilateral to be
the level set of the sum of the distances to m → 2 different lines.
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1. Introduction

In [6] the authors set out to design a single Cartesian equation in variables (x, y) whose set of solutions is a
quadrilateral in the Euclidean plane R2 whose vertices are given by their coordinates. Apart from the four
basic arithmetic operations, the equation contains only the absolute value as a further operation. The method
presented in the said article works well for most convex quadrilaterals (though not all) but is cumbersome
for non-convex or crossed quadrilaterals. We briefly describe the approach in [6]: Let (x0, y0), (x1, y1), (x2, y2),
(x3, y3) be the Cartesian coordinates of the vertices of a quadrilateral where its perimeter is traversed in the
corresponding order of the vertices. Solve the linear system





x0 y0 1 0 0 0 ↑0 ↑0
x1 y1 1 0 0 0 ↑x1 ↑y1
x2 y2 1 0 0 0 ↑0 ↑0
x3 y3 1 0 0 0 ↑x3 ↑y3
0 0 0 x0 y0 1 ↑x0 ↑y0
0 0 0 x1 y1 1 ↑0 ↑0
0 0 0 x2 y2 1 ↑x2 ↑y2
0 0 0 x3 y3 1 ↑0 ↑0
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↑0
↑1
↑1
↑0
↑1
↑0





. (1)

Then the equation which describes the boundary of the quadrilateral is given by
∣∣∣∣
Ax+By + C

Gx+Hy + I

∣∣∣∣+
∣∣∣∣
Dx+ Ey + F

Gx+Hy + I

∣∣∣∣ = 1. (2)

Observe, however, that for given (x0, y0), (x1, y1), (x2, y2) the equation detM = 0 is quadratic in the variables
(x3, y3) and describes a conic through the points (x0, y0), (x1, y1), (x2, y2). For example, for (x0, y0) = (1, 1),
(x1, y1) = (↑1, 2), (x2, y2) = (↑1, 1), we obtain the conic 3 + x2 ↑ 6y + 2y2 = 0 (see Figure 1). For all points
(x3, y3) on this conic (different from the three given points), the equation (1) has no solution.
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Figure 1. For all convex quadrilaterals with fixed vertices (x0, y0), (x1, y1), (x2, y2) and fourth point (x3, y3) on the red ellipse the equation (1)
has no solution.

The problem with a non-convex or a crossed quadrilateral is, that equation (2) draws a convex solution in the
projective plane that passes over the ideal line (see Figure 2).

(x0, y0)

(x1, y1)

(x3, y3)

(x2, y2)

Figure 2. A non-convex quadrilateral.

Nevertheless, it is also possible to write the non-convex boundary of the quadrilateral in Figure 2 as the
level set of a single Cartesian equation: The vertices are (x0, y0) = (0, 0), (x1, y1) = (1, 1), (x2, y2) = (↑2, 0),
(x3, y3) = (1,↑1). Then the quadrilateral is the level set

{
x ↓ R2 : max

(
max(↔n1, x↗ ↑ d1, ↔n2, x↗ ↑ d2),min(↔n3, x↗ ↑ d3, ↔n4, x↗ ↑ d4)

)
= 1

}
(3)

Here
n1 =


1
10 (↑1,↑3)t, n2 =


1
10 (↑1, 3)t, n3 =


1
2 (1,↑1)t, n4 =


1
2 (1, 1)

t

are the outer unit normal vectors of the sides of the quadrilateral, ↔·, ·↗ is the Euclidean inner product, and
d1 = d2 =


2
5 ↑ 1, d3 = d4 = ↑1. Notice also that the minimum and the maximum function in (3) can be

expressed with the absolute value:

min(a, b) = 1
2 (a+ b↑ |a↑ b|), max(a, b) = 1

2 (a+ b+ |a↑ b|).

We refrain from giving a general formula for this problem here, but focus now on the actual goal of this article:
Let f : R2 ↘ R, x ≃↘ f(x), denote the (weighted) sum of the distances of a point x to a set of given straight lines
ω1, . . . , ωm. We then ask, which quadrilaterals can be written as the level set of such a function f .

This question is also motivated by Descartes’ solution of Pappus’ problem as described in Chapter 23 of [2]:
Given m straight lines ωi in the plane, n angles εi, and a line segment a. For any point x in the plane, the oblique
distances ϑi to the lines ωi are defined as the (positive) lengths of segments that are drawn from x toward ωi
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making angle εi with ωi. Find the locus of points x for which the following ratios are constant:

for m = 3 lines ϑ21 : ϑ2ϑ3

for m = 2k → 4 lines ϑ1 . . . ϑk : ϑk+1 . . . ϑ2k

for m = 2k + 1 → 5 lines ϑ1 . . . ϑk+1 : aϑk+2 . . . ϑ2k+1

Instead of oblique distances, we can equivalently work with weighted normal distances (see Figure 3).

ϑi di

ωi

x

εi

Figure 3. Oblique distances interpreted as weighted normal distances: ωi = di csc(εi)

The classical Greek geometry has considered the following loci:

• the sum of the distances to two given points is a constant (this gives an ellipse),
• the ratio of the distances to two points is a constant (this gives a circle of Apollonius),
• the ratio of (products of) distances to straight lines is a constant (this is Pappus’ problem).

But the sum of the distances to straight lines appears then only in Viviani’s theorem from 1649, and in its
generalizations (see, e.g., [1]). However, there the question is not about the locus. In this sense we close a gap
here by considering the locus of the set of points for each of which the sum of the distances to given straight
lines is a constant.

2. Weighted distances to three lines

Before we start we fix some notation which we will use throughout this text. The vertices of the quadrilateral
will be denoted by A,B,C,D. We will consider the corresponding complete quadrangle and denote by E the
intersection of AB and CD, and by F the intersection of AD and BC (see Figure (5). ω1 is the diagonal AC,
ω2 the diagonal BD, and ω↑3 the diagonal EF . The intersections of the diagonals are O = ω1 ⇐ ω2, P = ω1 ⇐ ω↑3,
and Q = ω2 ⇐ ω↑3. When we work with vectors, O will be the origin. Moreover, we use the notation a = |OA|,
b = |OB|, c = |OC|, d = |OD|, p = |OP |, q = |OQ| for the lengths of the respective segments.

In this section we treat the question which quadrilaterals can be described as level sets of the weighted sum
of the distances to three lines. Suppose we are given a convex quadrilateral ABCD in the Euclidean plane.

By choosing unit normal vectors n1, n2 to ω1, ω2, and M =


0 ↑1
1 0


we may write A = ↑aMn1, B = bMn2,

C = cMn1, D = ↑dMn2.

A further line ω3 which does not meet the quadrilateral and with unit normal vector n3 will be determined
later. We assume that the orientation of n3 is such that the quadrilateral lies in the half plane with boundary ω3
in which n3 points. The line ωi is given by the equation

↔ni, x↗ ↑ di = 0, ⇒ni⇒ = 1,

where x = (x1, x2) ↓ R2 runs along ωi. The distance of a point x ↓ R2 from ωi is given by the function

fi(x) = |↔ni, x↗ ↑ di|.
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Figure 4. The quadrilateral ABCD.

The weighted sum of the distances of x to ω1, ω2 and ω3 is

f(x) =
3

i=1

kifi(x)

for weights ki → 0. Then the gradient of f along the boundary of the quadrilateral is given as follows:

along s1 ⇑f = k1n1 + k2n2 + k3n3

along s2 ⇑f = k1n1 ↑ k2n2 + k3n3

along s3 ⇑f = ↑k1n1 ↑ k2n2 + k3n3

along s4 ⇑f = ↑k1n1 + k2n2 + k3n3

The gradient of f along s1 is perpendicular to s1, and hence there exists ϖ ↓ R \ {0} such that

↑ϖM(bMn2 + aMn1) = k1n1 + k2n2 + k3n3

or equivalently
k3n3 = n1(ϖa↑ k1) + n2(ϖb↑ k2). (4)

Similarly, with s2, s3, s4 in place of s1, we obtain

k3n3 = n1(ϱc↑ k1) + n2(↑ϱb+ k2) (5)
k3n3 = n1(↑ςc+ k1) + n2(↑ςd+ k2) (6)
k3n3 = n1(↑ϑa+ k1) + n2(ϑd↑ k2) (7)

Since n1 and n2 are linearly independent, we infer from (4)–(7)

ϖa↑ k1 = ϱc↑ k1 = ↑ςc+ k1 = ↑ϑa+ k1

ϖb↑ k2 = ↑ϱb+ k2 = ↑ςd+ k2 = ϑd↑ k2.

It follows that
ϖ = 2φcd, ϱ = 2φad, ς = 2φab, ϑ = 2φbc

for arbitrary φ > 0, and

k1 = φac(b+ d), k2 = φbd(a+ c), k3n3 = n1φac(d↑ b) + n2φbd(c↑ a).

It turns out that this result has a nice geometric interpretation which can be seen by choosing φ = 2
(a+c)(b+d) .

Then the wights

k1 =
2ac

a+ c
, k2 =

2bd

b+ d
(8)
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are the harmonic means of the segments of the diagonals, and

k3n3 = n1
2ac(d↑ b)

(a+ c)(b+ d)
+ n2

2bd(c↑ a)

(b+ d)(c+ a)
.

We consider the following three cases:

1. Suppose a = c and b = d. In this case the quadrilateral is a parallelogram, and we have k3 = 0. Hence, in
this case, the third line ω3 is not necessary.

2. Suppose a = c and b < d (the case b > d is symmetric). In this case the quadrilateral is an oblique kite, and
we have

k1 = a, k2 =
2bd

b+ d
, k3 = a

d↑ b

b+ d
, n3 = n1. (9)

This means that the third line ω3 is parallel to n1.

3. Suppose a ⇓= c and b ⇓= d. Without loss of generality we assume a > c, b > d. P ↓ ω1 is the harmonic
conjugate of O with respect to A and C, and Q ↓ ω2 is the harmonic conjugate of O with respect to B
and D (see [4], and Figure 5). Then the distances of P and Q respectively from O are

p =
2ac

a↑ c
, q =

2bd

b↑ d
. (10)

A

ω1

B

O

ω2

C

D

E

F

ω→3

Q

n2

n1
P

Figure 5. The complete quadrangle ABCD.

A simple calculation shows that
(a↑ c)(b↑ d)

(a+ c)(b+ d)
M ↼PQ = ↑k3n3. (11)

Hence, ω3 is parallel to the outer diagonal ω↑3. Observe that (11) also shows that ↑n3 points towards the
half plane bounded by ω↑3 which contains the quadrilateral ABCD. Hence we must choose ω3 ⇒ ω↑3 on the
other side of the quadrilateral ABCD. What we also learn from (11) is that

k3 =
(a↑ c)(b↑ d)

(a+ c)(b+ d)
|PQ|. (12)

To summarize we have the following result.
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Theorem 1. 1. Every parallelogram is the level set of a weighted sum of the distances to its diagonals. The weights

are given by (8).

2. Every convex oblique kite is the level set of a weighted sum of the distances to its diagonals and a third line parallel

to the diagonal which is bisected by the other. The weights are given by (9).

3. Every convex quadrilateral which is neither a parallelogram nor an oblique kite is the level set of a weighted sum of

the distances to its diagonals and a third line which is parallel to the outer diagonal of the complete quadrangle. The

weights are given by (8) and (12).

We remark, that for a parallelogram, the points E,F, P,Q lie on the ideal line (of the projective plane), for an
oblique kite, P or Q lies on the ideal line, and for a trapezoid, E or F lies on the ideal line.

3. Distances to an arbitrary number of lines

If we restrict ourselves to the case of an unweighted sum, the question arises which quadrilaterals occur as
level sets of the sum of the distances to two or more lines. We start with the general case of m → 2 lines.

3.1. A necessary condition

Let ω1, . . . , ωm be different straight lines in the Euclidean plane R2, m → 2. The line ωi is again given by the
equation

↔ni, x↗ ↑ di = 0, ⇒ni⇒ = 1,

where x = (x1, x2) ↓ R2 runs along ωi, and n is a unit normal vector of ωi. The distance of a point x ↓ R2 to ωi is
given by the function

fi(x) = |↔ni, x↗ ↑ di|.
The sum of the distances of x to ω1, . . . , ωm is

f(x) =
m

i=1

fi(x).

As a sum of convex functions, f is also convex. We assume that at least two of the lines ωi are not parallel.
Then it follows that f is coercive and hence the level sets of f are bounded. The lines ωi divide the plane into
convex poygonal regions. On each such region, f is an affine function. Therefore, f attains its minimum either
in a single point (a vertex of one of the mentioned polygons), along a line segment (the side of one of the
polygons), or in all points of one of the polygons. Let us assume, that f has a unique minimum in a point
x0 ↓ R2. By suitable choice of the coordinate system we can achieve x0 = 0. Let us further assume that only
two of the lines, say ω1 and ω2 pass through the origin, which we denote by O. Then the level sets

{x ↓ R2 : f(x) = h}
are quadrilaterals for all h ↓ (f(0), f(0) + ↽) provided ↽ > 0 is sufficiently small. Let a, b, c, d continue to denote
the positive distances of the vertices of the quadrilateral from O (see Figure 6). Then, with

M =


0 ↑1
1 ↑0



the vertices are given by ↑aMn1, bMn2, cMn1 and ↑dMn2 if we chose the orientation of the normal vectors
n1, n2 as indicated in Figure 6.

We choose the orientations of the normal vectors n3, . . . , nm such that d3, . . . , dm < 0. Let n0 :=


m

i=3 ni. Then
the gradient of f along the line segments s1, . . . , s4 is given as follows:

along s1: ⇑f = n1 + n2 + n0

along s2: ⇑f = n1 ↑ n2 + n0

along s3: ⇑f = ↑n1 ↑ n2 + n0

along s4: ⇑f = ↑n1 + n2 + n0
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cMn1

→aMn1

ω1

bMn2

→dMn2

ω2

n1

n2

O a

b

c

ds3

s4

s1

s2

Figure 6. The level set (red) for h ↓ (f(0), f(0) + ϑ), ϑ > 0 small.

The gradient of f along s1 is perpendicular to s1, hence there exists ϖ ↓ R \ {0} such that

↑M(bMn2 + aMn1) = ϖ(n1 + n2 + n0)

or equivalently
n1(a↑ ϖ) + n2(b↑ ϖ) = ϖn0. (13)

In the same way, we have

n1(c↑ ϱ) + n2(↑b+ ϱ) = ϱn0 (14)
n1(↑c+ ς) + n2(↑d+ ς) = ςn0 (15)
n1(↑a+ ϑ) + n2(d↑ ϑ) = ϑn0 (16)

The equations (13)–(16) can only hold simultaneously if all 2⇔ 2 minors of the matrix





↑a↑ ϖ ↑b↑ ϖ ϖ
↑c↑ ϱ ↑b+ ϱ ϱ
↑c+ ς ↑d+ ς ς
↑a+ ϑ ↑d↑ ϑ ϑ



 (17)

vanish. In particular we have

det


b↑ ϖ ϖ
d↑ ϑ ϑ


= bϑ ↑ dϖ = 0

det


↑b+ ϱ ϱ
↑d+ ς ς


= ↑bς + dϱ = 0

det


a↑ ϖ ϖ
c↑ ϱ ϱ


= aϱ ↑ cϖ = 0

det


↑c↑ ϱ ϱ
↑a+ ϑ ϑ


+ det


↑b+ ϱ ϱ
↑d↑ ϑ ϑ


= (a↑ d)ϱ + (c↑ b)ϑ = 0.

This is a linear system for ϖ,ϱ, ς, ϑ, and a nontrivial solution exists only if

0 = det





↑d 0 0 b
0 d ↑b 0
↑c a 0 0
0 a↑ d 0 c↑ b



 = b(bcd+ bda↑ bca↑ cda).
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Recall that b, c, d, a > 0 and hence the last condition is equivalent to
1

a
+

1

c
=

1

b
+

1

d
.

In summary, we have obtained the following theorem:

Theorem 2. Let ω1, . . . , ωm, m → 2, be straight lines in the Euclidean plane, not all parallel. Assume that the sum f(x)
of the distances of a point x to the lines ω1, . . . , ωm attains its minimum in a single point x0 in which only two of the

lines ω1, . . . , ωm meet. Then, the level sets {x ↓ R2 : f(x) = h} form a family of homothetic convex quadrilaterals for

all h ↓ (f(0), f(0) + ↽) provided ↽ > 0 is small enough. The intersection of the diagonals divides them into segments of

lengths b and d on one diagonal and of lengths c and a on other diagonal. These lengths satisfy the conditon

1

a
+

1

c
=

1

b
+

1

d
. (18)

Observe that the theorem is trivially valid for m = 2 where the level sets are rectangles.

We want to interpret condition (18) geometrically. To this end, we express the points E and F by the vectors n1

and n2:

E =
1

ad↑ bc
M

(
ac(b+ d)n1 + bd(a+ c)n2

)
(19)

F =
1

ab↑ cd
M

(
ac(b+ d)n1 ↑ bd(a+ c)n2

)
(20)

Here, we assume for the moment that the quadrilateral is neither a parallelogram nor a trapezoid, i.e., both
denominators ad↑ bc and ab↑ cd in (19) and (20) are different from zero. Using these expressions, we find for
the scalar product

↔E,F ↗ = (abc↑ abd+ acd↑ bcd)(abc+ abd+ acd+ bcd)

(ad↑ bc)(ab↑ cd)
.

This expression is equal to 0, if and only if the vectors E and F are orthogonal, and if and only if (18) holds.
Thus we obtain:

Corollary 3. Let ABCD be a convex complete quadrilateral which is neither a parallelogram nor a trapezoid. Then, with

the notation used before, the condition (18) is equivalent to the fact that O lies on the Thales circle over the segment EF
(see Figure 7).

The condition (18) can be interpreted geometrically in yet another way (see Figure 8): Indeed, it is easy to check
that for a > d, b > c and a = |O↑A↑|, b = |O↑B↑|, c = |O↑C ↑|, d = |O↑D↑|, the line RS passes through O↑ if and only
if the condition (18) holds — apply the intersecting chords theorem for the point O↑ and for the point C ↑.
Remark 4. Note that for a rectangle (18) is trivially always satisfied. For a trapezoid we have either ab = cd or
ac = bd. Thus, (18) is equivalent to a = d or a = b, respectively. Hence, a trapezoid satisfies (18) if and only if it
is symmetric. Geometrically, the Thales circle over EF degenerates for a trapezoid to the normal to the parallel
sides of the trapezoid going through E or F , and hence, under the conditon (18), to the symmetry axis of the
trapezoid.

3.2. The case of two lines

The case of two lines is simple:

Proposition 5. Each rectangle is the level set of the sum of the distances to its diagonals. Vice versa, given two

intersecting lines ω1, ω2, the level sets of the sum of the distances to ω1 and ω2 are rectangles with ω1, ω2 as diagonals.

Notice that a rectangle can also be written as the level set of the sum of the distances to m → 4 lines. Indeed, we
can add to the two diagonals

• any number of pairs of parallel lines with the rectangle between them,
• any number of equilateral triangles with the rectangle in its interior,
• the pair ω1, ω2 more than once,

or any combination of these variants.
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O

A

B

C

D

E

F

t

a

c

d

b

Figure 7. Necessary and sufficient condition for 1
a + 1

c = 1
b + 1

d : The Thales circle t over the segment EF passes through O.

O→
A→D→

B→ C→

R

S

Figure 8. Geometric interpretation of condition (18).

3.3. The case of three lines

If we set k1 = k3 in (9) it follows that b = 0. A kite can therefore not be the level set of the sum of the distances
to three different lines. If the quadrilateral is not a kite, then the points P and Q exist, and the condition k1 = k3
in (8) and (12) imply

|PQ| = p · b+ d

b↑ d
(21)

where we assume b > d. Similarly, k2 = k3 yields

|PQ| = q · a+ c

a↑ c
. (22)
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From these two equations we deduce

pq

|PQ| = |PQ| · b↑ d

b+ d
· a↑ c

a+ c
= k3

where we have used (12) for the last equality. So, we obtain:

Theorem 6. A necessary and sufficient condition for a convex quadrilateral ABCD to be the level set of the sum of the

distances to three lines is
|OP ||OQ|

|PQ| =
2|OA||OC|

|AC| =
2|OB||OD|

|BD| , (23)

where O is the intersection of the diagonals AC and BD, and where P and Q are the intersections of AC and BD with

the outer diagonal.

If ABCD is a quadrilateral which satisfies the condition of Theorem 6, then the three triangle inequalities must
hold in the triangle OPQ. If we denote r = |PQ|, then this means that

(p2 + q2 + r2)2 ↑ 2(p4 + q4 + r4) > 0

(see, e.g., [5]). Using (21) and (22) this can be expressed by the inequality

(3ab+ bc+ ad↑ cd)(ab+ 3bc↑ ad+ cd)(ab↑ bc+ 3ad+ cd)(↑ab+ bc+ ad+ 3cd) < 0. (24)

So, we obtain:

Corollary 7. A quadrilateral which is the level set of the sum of the distances to three lines exists if and only if the

diagonal segments a, b, c, d satisfy (18) and (24).

We give two constructions of quadrilaterals which are the level set of the sum of the distances to three lines.

Construction 1. Start with four segments of lengths a, b, d, c which satisfy (18) such that A↑, O↑, C ↑ are collinear
with a = |O↑A↑| > c = |O↑C ↑|, and B↑, O↑, D↑ are collinear with b = |O↑B↑| > d = |O↑D↑| (see Figure 8). Construct
the harmonic conjugate P ↑ of O↑ with respect to A↑C ↑, and the harmonic conjugate Q↑ of O↑ with respect to B↑D↑.
Construct a segment of length r = |O↑P ↑| b+d

b→d
. Condition (24) is satisfied if and only if |O↑P ↑|, |O↑Q↑| and r are

the sides of a triangle OPQ. Then the quadrilateral ABCD is easily constructed as can be seen in Figure 5.

Construction 2. We start with three points AOC with a = |OA| > c = |OC| on the diagonal ω1 of the
quadrilateral ABCD, and its second diagonal ω2 meeting ω1 in O. We need to find the points B and D on
ω2. To do so, construct the harmonic conjugate P of AOC. Observe that we have

|OQ|
|PQ|

Thm. 6
=

2ac

(a+ c)|OP |
(10)
=

a↑ c

a+ c
=

c
2ac
a→c

↑ c

(10)
=

|OC|
|PC| .

Hence Q is an intersection of ω2 and the Apollonian circle K for this ratio which is the Thales circle over AC as
indicated in Figure 9.

It remains to find B,D on ω2 such that B,D,O,Q are harmonic points and such that (18) is satisfied. The
construction is given in Figure 10: K1 is the circle with diameter OQ, and K2 the circle with diameter OH ,
where |OH| = 2ac

a+c
, and where O is between H and Q. Then, B is the intersection of the common tangents

of K1 and K2. If X,Y denote the contact points of these tangents on K1, then D is the intersection of XY
and OQ. Let Z and W denote the contact points of K2 with the tangents, and D↑ be the intersection of ZW
with OQ. Then B,D,O,Q and B,D↑, H,O are harmonic points by construction. The harmonic mean of |OD↑|
and |OB| is |OH|. Since the segments on the tangents |O↑O| = |O↑X| = |O↑Z| have equal lengths, it follows
that |OD↑| = |OD|. Hence, the harmonic mean |OD| and |OB| is |OH|, and therefore (18) is satisfied, and the
construction is completed.

We have learned from Construction 2 that Q on ω2 lies on the Thales circle over AC. By symmetry, the point P
on ω1 is a point of the Thales circle over BD. We can therefore reformulate Theorem 6 geometrically as follows:
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O

Aω1 C

ω2

P

K

Q1

Q2

Figure 9. Construction of the point Q (two solutions).

O Q

K1

H

K2

X

B

Z

DD→

Y

W

O→

Figure 10. Construction of the points B and D.

Theorem 8. Let ABCDEF be a convex complete quadrangle with the notation used before. A necessary and sufficient

condition for the quadrilateral ABCD to be the level set of the sum of the distances to three lines is that the Thales circle

over EF passes through O and that one of the following (and consequently both) conditions hold:

(i) The Thales circle over AC on ω1 passes through Q.

(ii) The Thales circle over BD on ω2 passes through P .

If ABCD is a trapezoid, E or F lie on the ideal line. In this case, the Thales circle over EF in Theorem 8 has to
be interpreted as in Remark 4.

Recall that condition (18) is equivalent to the fact that the Thales circle over EF passes through O. We also note
that according to the Bodenmiller-Steiner Theorem, the three Thales circles over the diagonals AC, BD and EF
of a complete quadrangle meet in two points, and hence, their centers are collinear (see [3], [4], and Figure 11).

The following calculation shows that the conditions (i) and (ii) in Theorem 8 together also imply (18): We have

P = 2 · ac

a↑ c
Mn1, Q = 2 · bd

d↑ b
Mn2.

Eliminating ↔n1, n2↗ from the equations

↔A↑Q, C ↑Q↗ = 0, ↔B ↑ P, D ↑ P ↗ = 0,
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yields again
(abc↑ abd+ acd↑ bcd)(abc+ abd+ acd+ bcd) = 0

which is equivalent to (18). This gives a further possibility to reformulate the result:

Theorem 9. Let ABCDEF a convex complete quadrangle with the notation used before. A necessary and sufficient

condition for the quadrilateral ABCD to be the level set of the sum of the distances to three lines is that the Thales circle

over AC passes through Q, and the Thales circle over BD passes through P .

O A

CP

Q

B

D

E

F

Figure 11. Necessary and sufficient conditions for a quadrilateral to be the level set of the sum of the distances to three lines.

3.4. The case of four or more lines

One can readily verify that actually all 2⇔ 2 minors of the matrix (17) vanish for

ϖ =
a(b+ d)

2d
, ϱ =

c(b+ d)

2d
, ς =

c(b+ d)

2b
, ϑ =

a(b+ d)

2b
,

if the condition (18) holds. For this choice the equations (13)–(16) coincide and yield

n0 = n1
d↑ b

d+ b
+ n2

c↑ a

c+ a
.

Clearly, we have ⇒n0⇒ < 1. Therefore, it is possible to choose unit vectors n3, . . . , nm (in particular m = 4) such
that

n0 = n3 + . . .+ nm.

Then we can take lines ω3, . . . , ωm with corresponding unit normale vectors n3, . . . , nm such that the
quadrilateral lies in the half planes into which these vectors point and we obtain the following result:

Theorem 10. Every convex quadrilateral which satisfies condition (18) is the level set of the sum of the distances to 4 (or

any number greater than 4) lines.
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