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Abstract - -  Zusammenfassung 

Numerical Analysis of Singular Weighted Integrals. In this article we investigate the numerical aspects 
of integrals of the form 

) f(x)O(x)dx (1) 

where f is an unobjectionable function and ~ is singular, i.e. ~ is oscillating with high frequency, is 
discontinuous or unbounded. Suitable integration algorithms are presented. 

AMS Subject Classifications: 65D30, 65G99 
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Numerik singul~ir gewichteter Integrale. In diesem Artikel wird die Numerik yon Integralen der Form 
(1) untersucht, wobei f eine numerisch unbedenkliche Funktion und ~b eine singul~ire Funktion ist, d.h. 
~k oszilliert mit hoher Frequenz, ist unstetig oder unbeschr~inkt. Geeignete Integrationsalgorithmen 
werden entwickelt. 

I. Introduction 

In different fields of applied mathematics and physics the following problem arises: 
Find a numerical approximation of the integral (1) where f is supposed to be a 
"nice" function whereas ~b may be discontinuous, unbounded or oscillating with 
high frequency (e.g. in the calculation of Fourier transforms). Then the standard 
integration algorithms as Simpson-, Romberg- or adaptive quadrature method do 
not converge in an appropriate way. In the case of an oscillating function ~, we 
have to choose the interval length of the order of the period of ~ which may be 
much smaller than the regularity of f would admit. In case of a discontinuous or 
unbounded r the step-length at least in a neighborhood of the singular points of ~k 
has to be very small--although f could be nice all over the interval of integration. 

As an example we mention computerized tomography where the weightfunction ~k 
comes from a so called filter which keeps to be the same for all density functions 
f .  In that particular situation an algorithm which only evaluates f at equidistant 
points is required (see [4]). 
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A first approach to the numeric of singular integrals goes back to Lyness and 
Ninham: in [3] trapezoidal rules of the form 

Rtm"l[g] m j~=i g 2j - 1 + 
= = 2 m  ' 

and 

I~1 < 1 

l m l  
Rt"' ~J[g] = m )~i g + (a(O) + 9(1)) 

for the numerical integration of S~ g(x)dx with a singular integrand g are investi- 
gated. The asymptotic expansion of the corresponding error functional is discussed 
for special cases of algebraic and logarithmic singularities. 

If the integrand is a product of a smooth function f and a singular function ~ the 
idea is to replace f by an approximation f usually an interpolation polynomial, 
and then integrating f~  analytically (a simple example of this technique is Filon's 
method: see e.g. [1]). The result are rules which do no longer need to evaluate the 
integrand fff but only the regular part f. The case of polynomial approximation of 
the smooth function f and a function ~O having algebraic or logarithmic singularities 
is discussed by de Hoog and Weiss in [2]. The method of de Hoog and Weiss allows 
the construction of integration algorithms of high order either by choosing a 
polynomial approximation of high order for f (which has the disadvantage that the 
weights which need to be calculated analytically get more and more difficult) or by 
explicit calculation of the error expansion (which is difficult and costly for general 
functions ~). Schneider has pointed out that (in case of algebraic singularities) for 
an appropriate choice of evaluation points (in general not equidistant) there results 
some profit in the error order (see [5]), 

Here we present methods which are applicable quite generally and an extrapolation 
method which does not require the explicit calculation of the error expansion. 

2. Trapezoidal Rule for Product Integration 

The trapezoidal rule we present here can already be found in [2]. But we want to 
give it a new interpretation and also give a slightly different derivation: 

L e t f e  C2([a,b]) and 0" = ~ e Ll([a,b]). Then we have 

f f  f(x)ql(x)dx = f(x)(O'(x) + - f'(x)(O(x) + ex + r d)l~ 

+ f]f,,(x)(o(x) + cx + d)dx. (2) 

Now we choose the constants c and d such that - (cx + d) = i(x) is the interpolation 
polynomial i of degree one for the function 0 in the points a and b. Thus the second 
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term in (2) vanishes and by partial integration we obtain, with h = b - a, 

f i  f(x)~(x)dx = f(x)(O'(x) O(b)- h O ( a ) ) b + f f o " ( x ) ( f ( x ) - j ( x ) ) d x .  (3) 

Here, j is the interpolation polynomial of degree one for the function f in the points 
a and b. Hence for all x e [a, b] there exists ~(x) e [a, b] such that 

The error term R [ f ]  is estimated 

IR[f]l <_ 

Definition: We call 

1 
f (x)-- j (x)  = ~(x -- a)(x -b) f"(~) .  

Thus the error term is estimated by 

O"(x)(f(x) - j (x))dx <_ M ~ ( f " ) ~  IO"(x)ldx, 

where we use the shorthand notation M~(9) = sup{lg(x)[;x e [a, b]}. Now let f 
C2([A,B]) and 0 " =  ~ ~LI([A,B]). Dividing the interval [A,B] by the points 

B - A  
a~ = A + hi for i = 0, . . . ,  n with h - and summing up (3) for each interval 

n 

leads to 

B n-1  

f(x)O(x)dx = h ~ f(a~)A20(a,) + r [ f ]  + e [ f ] .  (4) 
i=1 

Here, A 2 denotes the central second difference quotient 

A20(x) = O(x -- h) - 20(x) + O(x + h) 
h 2 

The boundary terms r [ f ]  which vanish for f e C2([A, B]) are 

r [ f ]  = f(B)O'(B) -f(A)O'(A) + ~(f(A)(O(al) - O(A)) + f(B)(O(an_l) - O(B))). 

by 

~ M ~ ( f " )  I~b(x)ldx. 

n - 1  

J [ f ]  := h ~ f(ai)A~O(ai) + T [ f ]  (5) 
i=1 

trapezoidalrule. We shall use the notation 3~[f], dh[f] or J~[f, tp] when we want 
to emphasize the dependence on A, B, h or ~. 

Interpretation: When we integrate S~f(x)O"(x)dx for f ~  C2([A,B]) we have to 
replace the second differential quotient 0" by the second difference quotient d20 and 
proceed as in the ordinary trapezoidal rule with mesh constant h (when f does not 
vanish at the endpoints of the interval a boundary term T [ f ]  has to be added). The 
error order is O(h 2) as for the classical trapezoidal rule. 
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3. Higher Order Methods 

3.1 Sirnpson's Rule for Product Integrals 

Let f ~ C3([A,B]) and 0 " =  ~ ~ LI([A,B]). Dividing the interval [A,B] by the 

h 2 B - A  
points ai = A + i~ for i = 0, 1 , . . . ,  n, n even and h = n we can interpolate f 

on every interval [a~-l, ai+l] (i odd) by a polynomial of second degree coinciding 
with f at a~_ 1, a~, ai+ 1 (i = 1 . . . . .  n - 1). Integrating on each interval and summing 
up yields 

f ;  f(x)O"(x)dx = iLaf(ai)(~(O(ai_l)  - O(ai+l) ) 

4, ) 
+ ~(0 (ai_l) + O'(ai+l) ) 

+ ~ f(a~) (O(a~+2)- O(a~_2) ) 
i=2 ,even  

- ~(O'(ai-2) + 60'(ai) + O'(ai+2))) + T + R. (6) 

The boundary terms are 

The error term R may be estimated by 

]el-< h~,- ( f  ' ') [O(x)ldx. (8) 
72,,/3 

The formulas (6)-(8) correspond to the classical Simpson rule. However notice the 
following differences to the classical case: 

Remark: Suppose P3 is an arbitrary polynomial of third degree. Then we can write 
P3 =/~3 + Pz where P2 is a polynomial of second degree which coincides with P3 in 
the points ai_ ~, a t, ai+ 1 and hence P3 -- 0 in the points a~-l, ai, a,+l, i.e. i63 is odd 
with respect to the point av Thus we have 

fa ''+' fo"+  fo"+  pa(x)~(x)dx = fi3(x)@(x)dx + p2(x)@(x)dx = I + II. (9) 
i - I  i - 1  i - I  

If ~9 is an even function with respect to the point a~ (as for r - 1 in the classical 
situation) we have that I = 0 in (9) and hence that integration rule (6) is exact even 
if f is a polynomial of third degree. But in general (i.e. if the weightfunction does 
not have the mentioned special symmetries) the rule (6) integrates only polynomials 
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of second degree exactly. The same effect is responsible for the fact that the error 
order (8) is only O(h 3) (the classical Simpson rule has error order O(h4)). 

For higher order rules of the Newton-Cotes type see [2]. 

3.2 Extrapolation Methods for Product Integrals 

3.2.1 Linear Extrapolation 

The trapezoidal integration formula (5) 

f f(x)~b(x)dx = J~[f] + Rba[f] 

is linear and of order two, i.e. j b[.]  is linear and R satisfies R,b[x "] = 0 for n e {0, 1}. 
Defining a new integration rule b y  

jb[ f ]  := pjba[f] + q(j~[f] + j ~ [ f ] )  

a + b  
with v - 

2 
degree two, i.e. 

- - -  we choose p and q such that J integrates exactly polynomials of 

pR~[x 2] + q(R~[x 2] + R~[x2]) = 0. 

Together with p + q = 1 an elementary calculation leads to 

2 2(0(a) - O(b)) + h2(o'(a ) + 20'(v) + O'(b)) 

P = h O'(a) - 20'(v) + O'(b) (10) 

2 2(0(a) - O(b)) - h(O'(a) + O'(b)) 
q = h O'(a) + 20'(v) + O'(b) (11) 

Now J is of order three. The same procedure repeated with J would give a rule of 
order four and so on. Unfortunately the formulas corresponding to (10) and 
(11) get very extensive and as for the Simpson- and corresponding rules of higher 
orders, primitives 0 with 0 (") = ~O of corresponding order n need to be calculated 
analytically. 

3.2.2 Nonlinear Extrapolation 

In order to get an easier extrapolation scheme for the trapezoidal formula (5) let us 
consider its asymptotic error expansion which we infer from [2]: For  the case of 
the singular function ~9(x) = xa(1 - x) ~', fl, 09 > - 1, and a C~ f(x) on 

1 
x ~ [0, 1] de Hoog and Weiss obtain for rule (5) with mesh length h - 

n 
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(,1 

R h [ f ]  = Jh[ f ]  -- J o  f (x ) • (x)dx  

= ~ h 2+' co~(s)ds ~(s)f~2+'~(s)ds 
r=O 

p-2 ~ ~l-l)(o) f~ + ~ h 2+r+~+1 ,-, r=o ,=o ~ l~)~. o h ( s ) ( ( -  f l  - -  r + l,s)ds 

p-2 ~.~ (__ 1)r-'(~t-t)(1) f~ 
§ 2 h 2 + ' + ~  ,=o t=o ~ -  T~. r  - r + l, 1 - s)ds 

+ O(h p+I) 

where COo(S ) = 1 - s, cox (s) = s, ( are periodic generalized zeta functions and 

(~o,.(x) = f(z+")(x)(1 - x) ~ 

~, (x )  = ft2+'~(x)x~. 

Analogous expansions hold when more algebraic singularities (in the interior of the 
interval) are considered. Instead of trying to calculate this expansion (which gets 
more difficult for more general ~O) explicitly as in 1-2] we shall make use of its 
structure, namely 

dh[ f ]  = f f  f(x)~p(x)dx + ,=1 ~ c'h~'" 

Let us first do some heuristic consideration: If we would know the exponents e~ (this 
is not always so obvious as in the above trivial example) then we could eliminate 
the leading error term by considering the linear combination 

y [ f ]  := Jh[ f ]  -- 2~"Jh/zEf] (12) 
1 - -  2 ' '  

On the other  hand we can get an approximation of the exponent a~ by 

1 
1 - - - -  

2 ~ , Jh[ f ]  - Jh/2[f] ,~ _ _  

Jh/2[f] - Jh/4[f] 1 1 
2 ~, 4~ 

and hence 

Jh[ f ]  - Jh/2[f] 

Jh/2 I f ]  -- Jh/4 I f ] "  

Let us look at what happens if we use approximation (13) for 2 ~1 in (12): We obtain 

Jh [ f ]  Jh/4 [ f ]  - -  (Jh/2 [ f ] )2  

7 [ f ]  = Jh[ f ]  - 2Jh/z[f]  + Jh/4[f]" 

To avoid cancellation we rewrite this and obtain Aitken's "AZ"-structure: 

(13) 
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( J h [ f ]  -- Ja/2 [ f ] )2  
J [ f ]  = a h [ f ]  -- 

J h [ f ]  -- 2Jh/=[f] + Jh /4[ f ]"  

Since we only use an approximation for a 1 there is little hope to eliminate the leading 
error term cl  h =' complete ly  and obtain a higher order rule. It is m u c h  more  likely 
that the order remains ~1 (maybe with smaller leading coefficient 5 , ,  [51[ << [c 11). 
But in fact 51 is zero as the following theorem shows. 

~, C~ with O Theorem: Suppose ~(k) = c o + < ~1 <~ ~2 ~ " ' "  -'-> 030 is converging for  
i=1 

k ~ ~ .  Le t  

Tl,n = ~(2 n) = Co + 2 = ,  
i=1 

f o r  n = O, 1 . . . . .  Then  there exist  constants ~i with ct 2 < ~3 < ~4 < "'" -~ ~ and 
constants 5 i such that 

(T1, . -- TI,n+I) 2 52 ~-. 5i 
2. T2'" = TI'" -- TI , .  -- 2TI,.+I + TI,.+2 Co + ~ + i=3 2 ~i"  

22=1 q- 22=2 -- 2 ='+=2+1 1 
Especially $3 = 2~3 - ~1 and 52 = c 2 22=2(2=1 _ 1) 2 , i.e. 52 <- ~ c2 i f=l  > 2. 

Proof." By rearranging the series we find 

c, cj ( 1  1 2 )  
2n(=,+=s-=,) ~ + 22~J 2~7+~j l < _ i < j  

T 2 ,  n = c O --}- 

C1(1 - - 1 ) 2  -4- i > ~ 1 ~ ( 1 - - 1 )  2" 

Expanding the fraction on the right hand side of this expression we obtain 

5 2 5 3 5 4 
T2,, = Co + 2 ~  + ~ + ~ + " "  (14) 

with exponents 8~ being the sums of exponents occurring in the numerator and 
multiples of the exponents occurring in the denominator of the fraction. For n large 
enough the series in (14) converges. [] 

Summary: Let ~k have finitely many algebraic singularities on an integration 
interval I of length I. Let f be smooth and T1, . = J~/2,,[f], n ~ ~ ,  the numerical 
approximations for ~ i f ( x ) O ( x ) d x  obtained by the trapezoidal rule (5) applied with 

l 
steplength h = ~ .  If we denote by Tin+l,,, m = 1, 2 . . . .  , the Aitken transformation 

of the sequence Tin,,,, i.e. 

(TIn,.- Tin,.+1) 2 
T m + l , n  = T i n , . -  

T i n . .  - 2Tm,.+l + T,.,.+2 

then the sequences T,.,n for fixed m are integration rules of increasing order O(ha"). 
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Remarks: (1) To eliminate the leading error term c2 h2 of the trapezoidal approxi- 
mation in the very first step there may be used the corresponding classical Romberg 
step. 

(2) The fact stated above is also true for logarithmic singularities as we shall see 
below. However the acceleration of convergence is of different kind. 

Example: We use this method on the integral 

fo 1 dx = - i x / ~  Erf(ix)lo ~ = 2.92530349181436... 
exp X 

Erf denotes the error function. To use the trapezoidal rule we need a second 
4x 3/2 1 

primitive of @(x) = 1/x//x, e.g. T "  We start with a step length h - 2" 

Tl,n T2~n 
2.9811732544 2.9252857083 
2.9395615282 2.9252965978 
2.9289322995 2.9253019559 
2.9262232288 2.9253031939 
2.9255357475 2.9253034370 
2.9253619756 2.9253034819 
2.9253181878 
2.9253071791 

T3,n T4,n 
2.9253071463 2.9253034950 
2.9253035659 2.9253034918 
2.9253034964 
2.9253034921 

The situation is more difficult when ~k includes logarithmic singularities. As a model 
case let us consider ~(x) = log Ix - Xo[, Xo in the integration interval. From [-2] we 
infer the structure of the corresponding error expansion for the trapezoidal rule 

TI,, = Jt/z,[f] = f(x)~O(x)dx + ~ + c i + d i l o g ~  
i=3 

l 
which is of order O(ha), h = ~ .  The Aitken transformation Ta,, of the sequence T1, . 

has the expansion 

T2'" = f(x)O(x)dx + ,~3 ~ k~=O c''k 1og~ , 

i.e. the leading error term has disappeared and T2,. is an integration rule of order 

O ( h  3 log h). The coefficient of the leading term ~3. in Tz.  is 
C3 + d3 log 4 d3 1 

' 36 + ~ l o g ~ .  

For T3,. we obtain 

T2, n = f(x)~O(x)dx + 1 23" + 2 ~" 
i=4 
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1 
where Pi and  qi are po lynomia ls  of  the same degree. N o w  the leading error  te rm 

has a coefficient which m a y  be expressed in terms of the coefficients of  T 1.. as follows 

c da z (log 2) 2 

d +  e log  I 252(7c3+16d31og2+ 7d3 log 1 )  

The  rule T3, ~ is of  the higher order  O(h3flog h). By induction we find that  Tm,n is a 
rule of  order  O (h3/(log h) 2m- 5). We close this considerat ion with a further numerical  
example  which illustrates the ex t rapola t ion  me thod  for a logar i thmic singularity. 

Example:  We use this me thod  on the integral 

- i  1 expxloglxldx = eXlogJxl[l_l - Ei(x)ll_l = E i ( - 1 )  - Ei(1) 
d -  1 

= 2.114501750751457 . . .  

Ei denotes  the exponent ia l  integral function. T o  use the t rapezoidal  rule we need a 
x 2 3X 2 

second primit ive of  @(x) = logx ,  e.g. T l o g l x J  - 4 "  We start  with a step length 

h = l .  

T l , n  T2,~ 

2.27154031740 2.11434648737 
2.15542261657 2.11443208069 
2.12508004091 2.11449052011 
2.11719806201 2.11450021412 
2.11518278781 2.11450155119 
2.11467290986 2.11450172536 
2.11454465485 2.11450174755 
2.11451249118 
2.11450443766 

3,n 

2.11461629087 
2.11450214197 
2.11450176511 
2.11450175145 
2.11450175079 

4,n 
2.11450176386 
2.11450175093 
2.11450175075 
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