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Number theoretic aspects of a 
combinatorial function 

Lorenz Halbeisen 1 and Norbert Hungerbiihler 

Abstract 

We investigate number theoretic aspects of the integer sequence A000522 of 
Sloane's On-Line Encyclopedia of Integer Sequences. This integer sequence 
counts the number of sequences without repetition one can build with n dis
tinct objects. By introducing the notion of the "shadow" of an integer func
tion - which is related to its divisors - we treat some number theoretic proper
ties of this combinatorial function and investigate the related "irregular prime 
numbers". 

1 Introduction 

The sequence we are interested in has the ID number A000522 in Sloane's On-Line 
Encyclopedia of Integer Sequences (http://www.research.att.com/-njas/sequenccs). 
Former identification numbers of this sequence were M1497 in [SP) and N0589 in [SI). 

The sequence A000522 has many faces (see, e.g., [Ga], [Si) or [Ri]). The most 
accessible one is its combinatorial interpretation: 

Definition 1 For n E N = { 0, 1, 2, ... } let seq 1•1 
( n) denote the number of one-to

one sequences - these are sequences without repetitions - we can build with n distinct 
objects. 

Notice that for l ~ n, each one-to-one function from {O, ... , l - 1} to {O, ... , n - 1} 
corresponds in a unique way to a sequence without repetitions of {O, ... , n - l} of 
length l. For example, for two objects, say a 1 and a2 , we can build the following 
sequences: 

( ) (= the empty sequence), (a1), (a2), (a1, a2), (a2, a1), 

Hence, seq1•1 (2) = 5. Of course, it is easy to find a general expression for seq1
•
1 (n). 

Since there are (!) possible ways to choose k objects from a set of n (distinct) objects, 
and since k {distinct) objects give rise to k! permutations, we get the following 

1The author would like to thank the Swiss National Science Foundation for supporting him. 



n ( ) n I 
Lemma 2 seq 1

•
1 (n) = L ; k! = ~ ~;. 

k=O J=O J 

Also the next representation for seq 1
•
1 (n) is elementary. 

Lemma 3 For all positive n E N we have 

seq 1
•
1 (n) = len!J. 

Remark: For n = 0 the formula does not hold, since seq 1
•
1 (0) = 1 < 2 = LeO!J. 

Proof of Lemma 3. According to Lemma 2 we have 

oo I 

en! - seq 1
•
1 (n) + L ~; 

j=n+l J. 

- seq 1
•
1 (n) + 
1 1 1 1 

+ ~ (l + ~ + (n + 2)(n + 3) + (n + 2)(n + 3)(n + 4) + · ·.·) · 

~ n~l (e - 1) < 1 for n ~ 1 

D 

D 

The following recursive relation for seq1-1 (n) is an immediate consequence of the 
second formula in Lemma 2. 

Lemma 4 For all positive n EN we have seq 1
•
1 (n) = nseq 1

•
1 (n - 1) + 1. D 

Using this formula, we finally get the following integral representation of seq 1
•
1 (n). 

Lemma 5 For all n E N we have 

seq 1
•
1 (n) = e 100 

t"e-tdt. 

Proof. The formula is correct for n = 0. Moreover, by integration by parts, we 
have inductively 

seq 1
•
1 (n)=e f

00 

t" e-t dt=e(-t"e-t)l
00 

+ej
00 

nt"- 1e-tdt 
11 ~~ 1 1 

.1. t 
= 1 + n seq 1•

1 
( n - 1) D 

139 



Just for the sake of completeness we like to mention that the exponential generating 
function g(z) of seq1-1 (n) is given by g(z) = 1e:_z.. This is easily checked directly, or 
deduced, e.g. by Oberschelp's technique (see (Ob]). 

In the sequel, to keep the formulas short, let n* := seq1
-
1 (n). 

2 The divisibility of n* 

To warm up we show a simple fact which has first been proved in [HS]. 

Lemma 6 For natural numbers n, k EN, the following implication holds: If 2kln*, 
then 2kl(n + 2k)• and 2A: f (n + t)* for any t with O < t < 2k. (2) 

Proof. The implication 2A:ln* ~ 2kl(n + 2k)• follows easily from the reduction 
property of the sequence seq1

-
1 (n) (see Lemma 9 below). So, we only have to prove 

here that if 2A:ln*, then 2A: f (n + tt for any t with O < t < 2k. 

For k ~ 4, an easy calculation modulo 2A: shows that for each n we have: If 2A: I n*, 
then 2A: { (n + t)* for O < t < 2k (cf. also Lemma 9). 

Assume there is a smallest k (k ~ 4) such that 2A:+11n• and 2H 1 I (n + t)* for some 
t with O < t < 2A:+1• Then, because 2A:l2k+1, we have 2kln* and 2kl(n + t)*. Since k 
is by definition the smallest such number, we know that t must be 2A:. 

n+2• 
(n + 2k)• = E (n+.?t)! = 1 · 2· ·2k. (2k + 1) · ·(2k + n) ( l) 

I . 
i=O 

+ 2· .2A:. ·(2k + n) (2) 

+ 2A:. ·(2k + n) (2l) 

+ (2k + n) c2• + n) 

+ 1 (2•+n+l) 

It is easy to see that 2H 1 divides lines {l) - (2t) since k ~ 2 and n ~ 2. 

2alb means "a divides b" 
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If we expand the products in the lines (2t + 1) - (2t + n + 1), we can collect all terms 
which are obviously divisible by 2k+1

• So, for a suitable natural number m we get 

(1) 

Remember that we have assumed 2k+1 In*, where n ~ 3 and k ~ 4. Thus, n* is even 
and hence n has to be odd. If j is n - 1, n - 2 or n - 3, then E~>; i~! is odd. 

M ·r O ,,,, . ,,,., ( 4) h °"n n! . . d h ,. °"n-1 °"n n! . oreover, 1 ::::::: J ::::::: n - , t en ~i>; i-;, 1s e\:en an t ere1ore, ~;=o ~i>j i-j! 1s 
odd. Hence, by (1) and 2H 1jn* we get 2k+1 { (n + 2k)*, which is a contradiction. 

D 

Remark. The Lemma 6 is the crucial point in the proof - which does not make use 
of the axiom of choice - of the following fact (cf. [HS, Theorem 4]): For any infinite 
set /11, there exists no bijection between the power-set of !if and the set of all finite 
one-to-one sequences of Ji,f. 

However, we like to know more about the function seq1
•
1 (n). With respect to 

Lemma 6 we can ask if for every k E N there exists an n E N such that 2k I n*. 
To answer this kind of questions we have to investigate a more complex property of 
seq1

•
1 (n). 

Definition 7 If {/(n)}neN is a sequence of naturnl numbers, we define its shadow 
to be the sequence { d(h)} ,,eN given by 

d(h) := ID(h)I, 

where D(h) := {n EN: n < h I\ h I J(n)} are ' the shadow sets of the sequence f. 

The slrn<low d(l,) co11nt.s the n11mber of SP<Juence entries /(0),/(1), ... ,J(h - 1) 
which are divisible by h. So, the shadow measures (to a certain extent) how "divisi
ble" the entries of the sequence f (n) are: For example, if only prime numbers occur 
in the sequence, then its shadow will reflect this fact by being small. If the entries 
of J(n) have many divisors, the shadow will typically be large. 

Remark. Lemma 6 implies that the shadow off (n) = seq1
·
1 (n) has the following 

property: For all k E N, there holds d(2t) ~ 1. Actually, as a consequence of 
Lemma 15, it will turn out that d(2k) = 1 for all k. 

Examples. If J(n) = c E N is a constant function, then the shadow off is 

d(h) = {h if hie, 
0 otherwise. 
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If J (n) is an arithmetic sequence of first order, then its shadow is periodic, and for 
the shadow of Eu_)cr's cp-function we have d(h) = 1 for all h ~ 1. 0 

The shadow gives a certain amount of information on the divisibility of the entnes 
of a sequence. Nevertheless, two different sequences can "cast" the same shadow as 
the following example shows. 

Example. If for a function J there exists an n0 E N such that for all · h ~ n0 we 
have d(h) = 0, then for all h ~ n0 we haYe J(h) ~ h. Vice versa, if J(h) ~ h for all 
h E N, then d(h) equals the number of zeros in (/(0), /(1), ... , f(h - 1)). Hence, it 
is easy to construct different functions which have the same shadow: 

n 0 1 2 3 4 5 6 7 

/1 (n) 0 1 2 3 4 5 6 7 

h(n) 0 1 1 2 3 4 5 6 

fa(n) 0 1 1 1 2 3 4 5 

shadow 0 1 1 1 1 1 1 1 0 

Now, we want to investigate the shadow of seq1
•
1 (n). First, we show that this . 

particular shadow is multiplicative and it turns out that the reason for this is the 
fact that seq 1

•
1 has the reduction property: 

Definition 8 A scquc11ce {J(n.)}neN is said to have the reduction property, if for 
all n,q EN, q ~ 1, we have 

Mod{/{n), q) = Mod(/(Mod{n, q)), q). (3) 

Lemma 9 The sequence { seq 1•
1 

( n)} nEN ha.3 the reduction property. 

Proof. For q = 1 or q > n, the statement is trivial. So, we may assume 1 < q ~ n. 

First we consider the case when Mod(n, q) = 0. By Lemma 4 we have seq 1
•
1 (n) = 

n • seq 1
•1(n - 1) + 1 and hence by Mod(n, q) = 0 we get seq 1

•
1 (n) = 1 mod q, which 

implies Mod(seq 1
•
1 (n), q) = Mod(seq 1

•
1 (Mod(n, q)), q), because scq 1

•
1 (0) = 1. 

Now assume that Mod(n + 1, q) -::/ 0 and that the statement holds for n. Again by 
Lemma 4 we have seq1-1(n+ 1) -:- (n + 1) · seq1-1 (n) + 1 and by the assumption we get 

seq1-1 (n + 1) = Mod((n + 1), q) • seq 1
•
1(Mod(n, q)) + 1 mod q 

= seq 1
•
1 (Mod(n + 1, q)) mod q. 

3~fod(n, m) := n - ml;';;-J denotes the reminder of the division of n EN by m EN, m ~ 1. 
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Therefore, \1od(seq 1
•
1 (n+ 1),q) = !\1od(seq 1

•
1 (\1od(n+ 1,q)), q) is validated. D 

Lemma 10 The shadow d of a sequence f (n) which has the reduction property is 
multiplicative, i.e. if (a , b) = 1 (4

), then d(ab) = d(a)d(b). 

Proof. Suppose (a, b) = 1, then we haYe by the reduction property 

D(ob) {n EN : n < ob I\ ablf(n)} 

= {n EN: n < ab I\ alf(n) /1. blf(n)} 

= {n EN: n < ab A ajf(Mod(n, a)) I\ blf(Mod(n, b))}. 

This means that a natural number n is an element of the shadow set D(ab) if and 
only if it lies in the intersection of the two sets 

.4 := {i +ax: i E D(a) I\ x E {0 , l, . . . , b - l}} 

and 
B := {j+by :j E D(b) A y E {0,1, ... , a-1}}. 

In other words D(ab) = An B. 

ObserYe that since (a, b) = 1, we haYe that for all (i , j) E {O, 1, .. . , a - l} x 
{O, l , . . . , b - 1} there exists a unique (x, y) E {O, l, ... , b - 1} x {O, 1, ... , a - 1} 
suc:h th at i +ax = j + by. This imp lies th at IA n Bl= ID(a )I ID(b)I and hence, 

d(ab) = ID (ab)I = l.4 n BJ= JD(a)J ID (b)I = d(a) d(o). D 

As a imm ediate consequence we get the following 

Corollary 11 If d is the .shadow of seq 1
•
1 and if n = n~=l l; is the prime decom

position of n, then 

le 

d(n) = IT d(p~' ). D 
i = l 

Th rrefor<', 1lH~ !:'l1;1d ow d of SC'q 1
•
1 is fully dctcrmi11cd by its ,·a lues on the powers of 

prime numb ers. But what can we say about d(pk) for p prime? Let us start our 
discussion of this question by the following obserYation . 

By the reduction property, all elements m E D(pk+l) must be of the form m = n+l pie 
for some n E D(p1c) and some l E {O, 1, . .. , p-1}. Hence, we get inducth·ely that 
if d(p) = 0, then d(pk) = 0 for all posith·e k E N. 

4 (a, b) denotes the greatest common divisor of a and b. 
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Definition 12 A prime number p with d(p) = 0 is called annihilating. · . -

Example. The sequence of annihilating primes is 3, 7, 11, 17, 47, 53, 61, 67, 73, 
79, 89, 101, 139, 151~ 157, 191, 199,.... . Q 

lFrom the obserYation above and the multiplicativity property, we have 

Proposition 13 If n E N is divisible by an annihilating prime, then d(n) = 0. □ 

\Vhat can we say about primes that are not annihilating? For positive numbers 
p, k, l, n E N we have the following: 

lp•+n (l k )' 

( l k)* = ~ p + n . n+ p ~ ., 
j=O J. 

(l pk+ n)! (1 pk+ n)! (l pk+ n)! (1 pk+ n)! 
= O! + ... + (lpk-1)! + (lpk)! + ... + (lpk+n)! 

(l k ))1 lp•+n (l k )1 = p + n . (1 k - )* ~ p + n . 
(lpk - 1)! P 

1 + -~ j! 
J=lp• 

tp•+n k )I 
= ( (l pk) ( 1 pk + 1) ... (1 l + n)) ( l pk - 1) • + L (Ip 1 n . 

i=l~ J 

lp•+n ( k )I 
=lpkn!(lpk-1)*+ L Ip ~n · modpl:+ 1 

j=lp• J. 
n-1 n 1 = lpk n! (lpk -1)* + lpk LL~--+ n* mod pk+l 
. 0 .. J. 'I, 

:,= ,>:, 

= lpk (n! (ll -1)* + t~ ~!i) + n* mod pl:+
1 

1=1 J=O J 

= zp'· (n! (l pk - 1)*
1

+ f . n! 
1 
j*) + n* mod pk+l 

. (;+l) . . 
:,=O 

( 

n-1 I ) = n* + lpk n! (p- l)* + L . n. 
1 
j* mod l+ 1 

. j=O (J + 1). 
(2) 

lFrom this calculation it is clear that the numbers Sp,n defined in the previous line 
are crucial for a further investigation of the shadow of seqH. 
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Definition 14 The number 

X(p) := II Mod(s 11,n,P) 
nED(p) 

is called the excess of the prime p. A prime number p with X (p) # 0 is called regular 
and otherwise irregular. 

Example. Since the empty product is by definition equal to 1, all annihilating 
primes are regular. The smallest irregular prime number is p = 383, all other 
primes less than 60'000 are regular. 

Lemma 15 If p is a regular prime number, then d(pk) = d(p) for all positive k E N. 

Before we prove Lemma 15, we state the following consequence. 

Proposition 16 If d is the shadow of seq1
•
1 and if n = n~=l p~ is the prime de-

composition of n, then •, · 
k 

d(n) = II d(pi) 

provided each prime Pi is regular or one of the primes is annihilating. D 

To prepare the proof of Lemma 15, we need a property of s11,n, which is given in the 
following · · · 

Lemma 17 If p and 11 are natural numhers, then 

Sp,n = Sp,n+p mod p. 

Proof. Let r := Mod(n:p), then n = op+ r for some a E N. \Ve first consider 
the case 11 ~ p, thus a ¥ 0. Because n ~ p we haYe n! = 0 mod p and therefore 

145 



n-1 

Sp,n = L 0:~)! j" mod p. Further we get 
;=0 

n-1 1 ap-2 1 n-1 

L (. n.1)' r = L (. n.1)' r + L 
j=O J + . j=O J + . j=ap-1 

n-1 I '°' n. = L (" + l)! j'" mod p 
j=ap-1 J 

r-1 r! 
-L("+l)!(p+j)* modp 

j=-1 J 
r-1 I 

= r!(p- 1}' + L (. r. )' j" mod p. 
. J + 1 . 

J=O 

If n < p, then Mod(n,p) = n and we get r = n. Hence, we haYe for all p, n EN that 

r-1 I 
- 1( 1)• ~ T. ·• 

Sp ,n = T. P - + {..- (j + l)! J 
;=O 

mod p, 

where r := ~1od(n ,p). D 

Proof of Lemma 15. Let p be a regular prime number. \\"e proc:eed induc:tiYely: 
For k = 1 there is nothing to show. For exponents larger than 1 we recall that all 
elements m E D(pk+l) must be of the form m = n + l pk for some n E D(p'') and 
some l E {O, 1, . . . ,p- l}. By the calculation (2) aboYe, we haYe 

Hence, it suffices to show, that 

(3) 

In fact, since pis prime, if the conclusion of (3) holds, the congruence n• +Ip" sp ,n = 0 
mod :µ1

:--"-J has a u1Ji4ue solution l E {O, 1, . .. ,P - 1} and therefore, the sets D(p 1
: ) 

and D(pk+l) have the same cardinality, which implies d(pk) = d(pk+1 ). 

On the other hand, by Lemma 17, (3) holds for all k if it is true for k = 1. But this, 
by definition, is exactly the case for regular primes p. □ 



3 How peculiar are irregular prhnes? 

In this section we like to investigate the value of d(p'=) for irregular primes p and 
k ~ 1, but first we recall some facts concerning regular primes. 

For a regular prime p we have d{p't) = d(p) for any positive k E N. Further, by 
definition, a ·prime number pis annihilating if and only if d{p) = 0. Remember that 
all annihilating prime numbers are regular. Now, fix an irregular prime number p. 
\Vhat can we say for k ~ 1 about d(pk)? 

Example. If we consider the sma])est irregular prime number p = 383, it turns 
out that d(383) = 3, but d{383k) = 2 for an k ~ 2. The reason for this shall be 
explained below. 0 

First note that - because p is not annihilating- d(p) > 0. Because p is assumed 
to be irregular, there exists at least one n E D(p) such that Mod{sp,n,P) = 0 and 
therefore, by Lemma 17, we have Mod(sp,n+lp,P) = 0 for all IE N. 

Fork ~ 1 and any n E D(pk) with Mod(sp,n,P) = 0 we have either the case pk+1 { n• 
or the case pk+1 I n*. 

If n E D(l) with Mod(sp,n,P) = 0- depending in which case we arc - we have 
either pk+I t (n + lp)* (for a]) l EN) or pk+1 I (n + lp)* {for all l EN). To see this, 
remember that by (2), for any n, l E N we have 

(n + lpk)* = n• + ll · Sp,n mod pk+l. 

Therefore, if pk+I I n• (or pk+l { n*) and p I Sp,n, then we get pk+I I (n + l pk)• (or 
pk+l f (n + lpk)•, respectively) for any l EN. 

Now let 
J(p) := l{n E D(p): Mod(sp,n,P) i- O}I, 

and for k ~ 2 let 

Notice that if €(7/ 0 ) = 0 for some k0 ~ 2, then E(pk) = 0 for any k ~ k0 • By the 
facts given above, it is not hard to verify that for k ~ 2 we have 

Example. If we consider again the smallest irregular prime number p = 383, it 
turns out that 6(383) = 2 and €(3832

) = 0. Thus, d(383k) = 6(383) = 2 for all 
k ~2. . 0 
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4 How rare are irregular primes? 

\Ve recall that a prime number p is irregular, if there exists an n E D(p) with 
Mod(sp,n,P) = 0. The function n 1-4 Mod(sp,n,P) shows (for different primes p) 
a rather random-like behavior. The idea is now, to replace n 1-4 Mod(sp,n,P) by 
equidistributed independent random variables Xp,n which take values in {O, 1, ... ,p
l}, i.e. the probability that Xp,n = i is! for each i E {O, 1, ... ,P - l}. From Xp,n 
we construct a new random variable Yp which takes, for each prime number p, the 
\'alue 1 if Xp,n = 0 for some n E D(p) and zero otherwise. In other words, instead 
of looking whether Mod(sp,n,P) = 0 for n E D(p), we throw a dice with p faces 
{O, 1, ... ,p - l} for each n E D(p). Therefore, the values p for which Yp = 1 are 
now called randomly irregular primes. The idea is, that randomly irregular primes 
should have approximately the same distribution as the ordinary irregular prime 
numbers. The probability that p is randomly regular is 

( 
l)d(p) 

P(p is randomly regular) = 1 - p . 

Thus, we have 

P(p1, P2, ... , Pk are all randomly regular) 
k ( l) d(p;) - II i--

j;:: I Pi 

- exp t d(pi) log (1 -~). 
i=l p, 

Observe, that )og(l - x) ~ -x for x ~ 0 (and I log(l - x) + xi = O(x 2
) for x ➔ 0). 

Thus, we can estimate 

k ) d(pi) 
P(p1, P2, ... , Pk are all randomly regular) ;S exp (- ~ -.- . 

i=l p, 

If we suppose for the moment - and experiments support this to some extent - that 
in average d(p) ~ c > 0 is approximately constant (with a numerical value of 
c ~ 0.9), then we have 

P(p., Pl, . _· . , Pt are all randomly regular) ;S exp ( - c t ;J . ( 4) 

Now, the sum of inverse primes is divergent, and hence, 

P(p 1,P'l, ... ,Pk are all randomly regular) ➔ 0 fork ➔ oo. 
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In other words, the probability that after a certain prime number no other randomly 
irregular prime number occurs is - under the made hypothesis on d(p) - zero. So, 
we should expect that infinitely many irregular prime numbers exist. 

On the other hand, what can we say about the' frequency of occurrence of (randomly) 
irregular primes? In order to answer this question, we close this discussion by 
calculating the distribution function of randomly irregular prime numbers. In other 
words we ask: How many randomly irregular primes may we expect in the set 
{P1,P2, ... ,Pk}. This is simply 

Example. The expected number of randomly irregular prime numbers in the range 
{1, 2, ... , 1000} is 1.99703 ... {the actual number of irregular primes in this interval 
is 1). In the interval {1, 2, ... , 106

} the expected number of randomly irregular 
primes is still below 3. 0 

Again, under the assumption that d(p) is in average a positive constant c, we can 
now state the following conjecture: 

Conjecture 18 There exist infinitely many irregular primes. Furthermore the dis
tribution function of the irregular primes is asymptotically , 

I I ~ _l {p ~ n : p is an irregular prime number} ~ c L-
p~n p 

p prime 

for a positive constant c. 

Remark. If we consider the random variable Z which takes the value p where p 
is the smallest randomly irregular prime, then a similar calculation as above shows 
that the expected value of Z is E(ZJ = oo. 

Acknowledgment. \Ve wish to thank Stephanie Halbeisen for writing aJl the 
C-programs, which built the touchstones for our conjectures. 
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