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1 Introduction

We consider existence and compactness questions for elliptic systems of the form

−div σ(x, u(x),Du(x)) = µ in Ω,(1.1)

u = 0 on∂Ω(1.2)

with measure-valued right hand side on an open, bounded domainΩ in IRn. We
assume thatσ satisfies the following hypotheses (H0)-(H3). Here IIMm×n denotes
the space of realm×n matrices equipped with the inner productM : N = Mij Nij

(we use the usual summation convention) and the tensor producta ⊗ b of two
vectorsa, b ∈ IRm is defined to be the matrix (ai bj )i ,j =1,...,m.

(H0) (continuity) σ : Ω × IRm × IIMm×n → IIMm×n is a Carath́eodory function,
i.e., x 7→ σ(x, u, p) is measurable for every (u, p) and (u, p) 7→ σ(x, u, p)
is continuous for almost everyx ∈ Ω.

(H1) (monotonicity) For allx ∈ Ω, u ∈ IRm and allF , G ∈ IIMm×n there holds

(σ(x, u,F )− σ(x, u,G)) : (F −G) ≥ 0.

(H2) (coercivity and growth) There exist constantsc1, c3 > 0, c2 ≥ 0 andp, q
with 1 < p < n andq − 1 < n

n−1(p− 1) such that for allx ∈ Ω, u ∈ IRm

andF ∈ IIMm×n

σ(x, u,F ) : F ≥ c1|F |p − c2,

|σ(x, u,F )| ≤ c3|F |q−1 + c3.

(H3) (structure condition) For allx ∈ Ω, u ∈ IRm andF ∈ IIMm×n there holds

σ(x, u,F ) : MF ≥ 0

for all matricesM ∈ IIMm×m of the formM = Id − a ⊗ a with |a| ≤ 1.
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Remarks.1) Assumption (H0) ensures thatσ(x, u(x),U (x)) is measurable onΩ
for measurable functionsu : Ω → IRm andU : Ω → IIMm×n.

2) A typical example for a functionσ satisfying (H3) is σ(x, u, p) =
α(x, u, p)p with a real valued non-negative functionα.

A serious technical obstacle is that forp ∈ (1, 2− 1
n ] solutions of the system

(1.1) in general do not belong to the Sobolev spaceW1,1. This fact has led
to the use of renormalized solutions in [LM] and generalized entropy solutions
in [BB] for elliptic equations of the above type (see also [Le]). We will use a
notion of solution where the weak derivativeDu is replaced by the approximate
derivative apDu. Recall that a measurable functionu is said to be approximately
differentiable atx ∈ Ω if there exists a matrixFx ∈ IIMm×n such that for allε > 0

lim
r→0

1
r n

meas{y ∈ B(x, r ) : |u(y)− u(x)− Fx(y − x)| > εr } = 0.

We write apDu(x) = Fx .

Definition 1 A measurable function u: Ω → IRm is called a solution of the
system (1.1) if

(i) u is almost everywhere approximately differentiable,
(ii) η ◦ u ∈ W1,1(Ω; IRm) for all η ∈ C1

0 (IRm; IRm),
(iii) σ(·, u, apDu) ∈ L1(Ω; IIMm×n),
(iv) the equation

−div σ(x, u(x), apDu(x)) = µ

holds in the sense of distributions.

Moreover we say that u satisfies the boundary condition (1.2) ifη ◦ u ∈ W1,1
0 (Ω)

for all η ∈ C1(IRm, IRm) ∩ L∞(IRm, IRm) that satisfyη ≡ id on B(0, r ) for some
r > 0 and |Dη(y)| ≤ C(1 + |y|)−1 for some constant C<∞.

Remarks.1) The conditions in Definition 1 (except (ii)) are the weakest possible
in order to define the equation (1.1) in the sense of distributions. Note that ifu is
approximately differentiable, then apDu is measurable and henceσ(·, u, apDu)
is measurable.

2) The assumptionη ◦u ∈ W1,1(Ω; IRm) ensures minimal regularity ofu. For
example, ifµ = 0 andσ(x, u, p) = σ(p) with σ(0) = 0, then piecewise constant
functionsu satisfy apDu = 0 almost everywhere but are not admissible solutions.

3) Note that the class of functionsη permitted in the definition of the boundary
values includes smooth functions of the formη(y) = α(|y|) y

|y| with limt→∞ α(t) /=
0.

The following theorem is the main result in this paper (see the end of this
introduction for the definition of the weak Lebesgue spaceLs,∞).

Theorem 2 LetΩ be a bounded, open set and suppose that the hypotheses (H0)–
(H3) hold. Assume in addition that one of the following conditions is satisfied:

(i) F 7→ σ(x, u,F ) is a C1 function.
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(ii) There exists a function W: Ω × IRm × IIMm×n → IR such thatσ(x, u,F ) =
∂W
∂F (x, u,F ) and F 7→ W(x, u,F ) is convex and C1.

(iii) σ is strictly monotone, i.e.,σ is monotone and(σ(x, u,F ) − σ(x, u,G)) :
(F −G) = 0 implies F = G.

Let µ denote anIRm-valued Radon measure onΩ with finite mass. Then the
system (1.1), (1.2) has a solution u in the sense of Definition 1 which satisfies the
weak Lebesgue space estimate

‖u‖∗Ls∗,∞(Ω) + ‖apDu‖∗Ls,∞(Ω) ≤ C(c1, c2, ‖µ‖M,measΩ).(1.3)

Here
s =

n
n − 1

(p− 1)

and
s∗ =

n
n − p

(p− 1)

is the Sobolev exponent of s. If c2 = 0 the right hand side of (1.3) reduces to

C(c1)‖µ‖
1

p−1

M .

Remarks.1) If p > n one can replace theLs∗,∞-norm of u in (1.3) by theC0,β-
norm withβ = 1− n

p . For p = q = n it is an open question whetherDu ∈ Ln,∞.
See Section 7 for the (weaker) inclusionu ∈ BMOloc.

2) The exponents in (1.3) are optimal as can be seen from the nonlinear
Green’s functionGp(x) = c|x|−n/s∗ for the p-Laplace equation

−div(|Du|p−2Du) = δ0

in IRn, n ≥ 3. In particularLs,∞ cannot be replaced byLs.
3) The pointwise monotonicity condition can be replaced by a weaker inte-

grated version, called quasimonotonicity, see Definition 3 and Corollary 4 below.
The key point in the proof of the theorem, which we give in Section 6, is the

“div-curl inequality” in Lemma 11 for the Young measure{νx}x∈Ω generated by
a sequenceDuk of gradients of approximate solutions. Together with the identity

apDu(x) = 〈νx , Id 〉(1.4)

the div-curl inequality implies easily thatσ(·, uk ,Duk) converges weakly inL1

to σ(·, u, ap Du) (see Lemmata 12 and 13 for details). The identity (1.4) is a
consequence of general properties of Young measures ifp > 2− 1

n since in this
caseDuk is bounded inLs for somes > 1. If 1 < p ≤ 2− 1

n one only has the
weaker bounds ∫

|uk |≤α
|Duk |pdx ≤ C(α)

but this still suffices to derive (1.4) (see Lemma 9). The main point here, as
well as in the proof of the div-curl inequality, is that while apDu may not be
bounded inL1 it still behaves at almost every point as anL1 function (and even
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as aC0 function up to a set of density zero). Young measures achieve a sufficient
localization to exploit that fact.

We will also use a weaker, integrated version of the pointwise definition of
monotonicity (H1) which we call quasimonotonicity. The definition is phrased
in terms of gradient Young measures (see Section 2 for further details). Note,
however, that although quasimonotonicity is “monotonicity in integrated form”,
the gradientDη of a quasiconvex functionη is not necessarily quasimonotone.

Definition 3 A functionη : IIMm×n → IIMm×n is said to be strictly p-quasimono-
tone if ∫

IIMm×n

(η(λ)− η(λ̄)) : (λ− λ̄) dν(λ) > 0

for all homogeneous W1,p-gradient Young measuresν with centre of mass̄λ =
〈ν, Id〉 which are not a single Dirac mass.

A simple example is the following: Assume thatη satisfies the growth condition

|η(F )| ≤ C |F |p−1

with p > 1 and the structure condition∫
Ω

(η(F +∇ϕ)− η(F )) : ∇ϕ dx ≥ c
∫
Ω

|∇ϕ|pdx

for all ϕ ∈ C∞
0 (Ω) and allF ∈ IIMm×n. Thenη is strictly p-quasimonotone. This

follows easily from the definition if one uses that for everyW1,p-gradient Young
measureν there exists a sequence{Dvk} generatingν for which {|Dvk |p} is
equiintegrable (see [FMP], [KP]).

As a consequence of our results we state the following corollary:

Corollary 4 Assume that the hypotheses (H0), (H2), (H3) are satisfied and that
σ is strictly p-quasimonotone. Letµ be anIRm-valued Radon measure onΩ with
finite mass. Then the system (1.1), (1.2) has a solution in the sense of Definition 1
and the a priori estimate (1.3) holds.

Our results generalize recent results in [FR] and [DHM] for thep-Laplace
system. The main improvements with respect to existing results are the relatively
weak assumptions in Theorem 2 and Corollary 4. In particular it suffices to
assume monotonicity or the weakerp-quasimonotonicity condition instead of
strict monotonicity. Moreover different coercivity and growth rates are allowed
and the casep ≤ 2 − 1

n is included. For another approach to such questions
see [DMM1] and [DMM2].

There exists an extensive literature on elliptic and parabolic equations with
measure valued right hand side see, e.g., [BB], [BG], [BM], [LM], [Mu1], [Mu2],
[Mu3], [Ra] and the literature cited therein. Compactness questions have been
discussed in [Fr], [La], [Zh]. Partial results concerning uniqueness of solutions
can be found in [BB], [DA], [KX], [LM].
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We end this introduction by recalling the definition of the weak Lebesgue
spacesLs,∞. A measurable functionf : Ω → IRl belongs toLs,∞(Ω) if ‖f ‖∗Ls,∞ :=
supt>0 t1/sf ∗(t) < ∞ where f ∗(t) := inf{y > 0 : λf (y) ≤ t} is the non-
increasing rearrangement off and λf (y) = L n{|f | > y} is the distribution
function of f . The expression‖f ‖∗Ls,∞ is only a quasinorm, but fors > 1 it is
equivalent to the usual norm ofLs,∞. For more information about topological
properties of the Lorentz spacesLs,r (in particular for 0< s ≤ 1) see [Hu].

2 A brief review of Young measures

In this section we briefly summarize basic facts concerning Young measures.
We follow the formulation given by Ball (see [Bl] and references therein). The
fundamental theorem about Young measures may be stated as follows:

Theorem 5 (Young, Tartar, Ball) Let Ω ⊂ IRn be Lebesgue measurable (not
necessarily bounded) and zj : Ω → IRm, j = 1, 2, . . . , be a sequence of Lebesgue
measurable functions. Then there exists a subsequence zk and a family{νx}x∈Ω
of non-negative Radon measures onIRm, such that

(i) ‖νx‖ :=
∫

dνx ≤ 1 for almost every x∈ Ω

(ii) ϕ(zk)
∗
⇀ ϕ̄ weakly∗ in L∞(Ω) for all ϕ ∈ C0

0 (IRn), whereϕ̄(x) = 〈νx , ϕ〉
(iii) If for all R > 0

lim
L→∞

sup
k∈IIN

meas{x ∈ Ω ∩ B(0,R) : |zk(x)| ≥ L} = 0(2.1)

then‖νx‖ = 1 for almost every x∈ Ω, and for all measurable A⊂ Ω there
holdsϕ(zk) ⇀ ϕ̄ = 〈νx , ϕ〉 weakly in L1(A) for continuousϕ provided the
sequenceϕ(zk) is weakly precompact in L1(A).

Here, “meas” denotes the Lebesgue measure restricted toΩ andC0
0 (IRm) = {ϕ ∈

C0(IRm) : lim|z|→∞ |ϕ(z)| = 0}.
Notice, that under hypothesis (2.1) for any measurableA⊂ Ω,

ϕ(·, zk) ⇀ 〈νx , ϕ(x, ·)〉 weakly in L1(A)(2.2)

for every Carath́eodory functionϕ : A × IRm → IR provided the sequence
{ϕ(·, zk)} is weakly precompact inL1(A) (see [Bl]). Moreover, ifL n(Ω) <∞,

zk → z in measure⇐⇒ the Young measure associated tozk is δz(x).(2.3)

The Young measure associated to the sequence (yk , zk) is

δy(x) ⊗ νx(2.4)

if yk → y in measure and ifνx is the Young measure associated tozk .
A Young measure{νx}x∈Ω is called W1,p-gradient Young measure (1≤

p ≤ ∞) if it is associated to a sequence of gradients{Duk} such that{uk}
is bounded inW1,p(Ω). It is called homogeneous ifνx = µ for almost every
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x ∈ Ω. If {νx}x∈Ω is aW1,p-gradient Young measure then there exists a function
u ∈ W1,p(Ω) such thatDu(x) = 〈νx , Id 〉 almost everywhere.

The following Fatou-type lemma will be useful in Section 5:

Lemma 6 Let F : Ω × IRm × IIMm×n → IR be a Carath́eodory function and
uk : Ω → IRm a sequence of measurable functions such that uk → u in mea-
sure and such that Duk generates the Young measureνx. Then

lim inf
k→∞

∫
Ω

F (x, uk(x),Duk(x)) dx ≥
∫
Ω

∫
IIMm×n

F (x, u, λ) dνx(λ) dx(2.5)

provided that the negative part F−(x, uk(x),Duk(x)) is equiintegrable.

More general versions of this lemma may be found in [Bd1], [Bd2] and [Val1],
[Val2]. Our assumptions allow the following elementary proof.

Proof.We may assume that the limes inferior on the left-hand side of (2.5) agrees
with the limit and is finite. Consider the Carathéodory functionsFR(x, u, p) =
min{R,F (x, u, p)} for R > 0. For fixed R > 0 the sequence{FR(x, uk(x),
Duk(x))}k is equiintegrable. We have∫

Ω

FR(x, uk(x),Duk(x)) dx ≤
∫
Ω

F (x, uk(x),Duk(x)) dx ≤ C <∞

for all k andR > 0. By (2.2) we have that for allR > 0

lim
k→∞

∫
Ω

FR(x, uk(x),Duk(x)) dx =
∫
Ω

∫
IIMm×n

FR(x, u(x), λ) dνx(λ) dx ≤ C ,

and by monotone convergence of the integrands asR→∞∫
Ω

∫
IIMm×n

F (x, u(x), λ) dνx(λ) dx ≤ C <∞ .(2.6)

On the other hand∫
Ω

F (x, uk(x),Duk(x)) dx−
∫
Ω

∫
IIMm×n

F (x, u(x), λ) dνx(λ) dx =

=
∫
Ω

F (x, uk(x),Duk(x)) dx−
∫
Ω

FR(x, uk(x),Duk(x)) dx +

+
∫
Ω

FR(x, uk(x),Duk(x)) dx−
∫
Ω

∫
IIMm×n

FR(x, u(x), λ) dνx(λ) dx +

+
∫
Ω

∫
IIMm×n

FR(x, u(x), λ) dνx(λ) dx−
∫
Ω

∫
IIMm×n

F (x, u(x), λ) dνx(λ) dx

=: Ik + II k + III .
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Now we have

Ik ≥ 0 ,

II k → 0 for any fixedR > 0 ask →∞,

III → 0 asR→∞, because of (2.6) and monotone convergence,

and the claim follows. �

3 Refined convergence results for 1< p ≤ 2− 1
n

We shall see in the next section that solutionsuk ∈ W1,p
0 (Ω) of the system

−div σ(x, uk(x),Duk(x)) = fk

with fk ∈ C∞(Ω) satisfy the a priori estimate∫
|uk |≤α

|Duk |pdx ≤ C(α, ‖fk‖L1).(3.1)

If p > 2 − 1
n one can deduce (see Lemma 10 below) thatDuk is uniformly

bounded in someLs(Ω) with s > 1. For p ≤ 2− 1
n , however,Duk may not be

bounded inL1 and hence it is not clear in what senseDuk converges and whether
the (weak) limit ofuk is differentiable in any sense. This difficulty has in fact
led to the restrictionp > 2− 1

n in many previous results.
In this section we show how Young measures can be used to extract from

(3.1) almost the same information as from uniformLp estimates of the gradient.
In particular we show that, forp > 1, the estimate (3.1) implies pointwise
almost everywhere convergence of (a subsequence of)uk (see Lemma 8) and
approximate differentiability of the limit as well as the important identity

apDu(x) = 〈νx , Id 〉 almost everywhere inΩ

(see Lemma 9). In the followingTα denotes the truncation function

Tα(y) = min{1,
α

|y| }y , α > 0.

By definition |Tα(y)| ≤ α and

DTα(y) =

{
Id for |y| < α,
α
|y| (Id− y

|y| ⊗ y
|y| ) for |y| > α.

Lemma 7 Let uk : Ω → IRm be a sequence of measurable functions such that

sup
k∈IIN

∫
Ω

|uk |sdx <∞ for some s> 0.(3.2)

Suppose that for eachα > 0 the sequence of truncated functions
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{Tα(uk)}k∈IIN is precompact in L1(Ω).

Then there exists a measurable function u onΩ such that for a subsequence

ukj → u in measure.

Proof. Choose a subsequence of{uk} (not relabeled) which generates a Young
measure{νx}x∈Ω . By (3.2) and Theorem 5(iii) the measuresνx are probability
measures for almost everyx ∈ Ω and

Tα(uk) ⇀ vα = 〈νx ,Tα〉
weakly in L1(Ω, IRm) and in fact strongly sinceTα(uk) is precompact inL1.
Consequently there exists a subsequence such that

Tα(ukl ) → vα almost uniformly,(3.3)

i.e., Tα(ukl ) → vα uniformly up to a set of arbitrary small measure. Let

Mα = {x ∈ Ω : |vα(x)| < α} .
Then for eachε > 0 andδ > 0 there exists a setEε of measure meas(Eε) < ε
and an indexl0(ε, δ) such that

|Tα(ukl )| < |vα(x)| + δ for all x ∈ Mα \ Eε and all l ≥ l0 .

It follows that

ukl (x) → vα(x) for almost everyx ∈ Mα \ Eε

(consider firstx ∈ Mβ , β < α and then the union overβ < α). Sinceε > 0 was
arbitrary it follows that

νx = δvα(x) for almost everyx ∈ Mα.

In view of the equivalence (2.3) it suffices to show that∪Mα has full measure.
Now clearlyMα ⊂ Mβ for α < β since

Tβ(ukl ) → Tβ(vα) = vα almost everywhere inMα,

and thereforevβ = vα on Mα. By (3.3) there exists for eachε > 0 a setEε, and
an indexl0(ε, α) such that meas(Eε) < ε and

|ukl | ≥ |Tα(ukl )| ≥
α

2
on (Ω \ Eε) \Mα for all l ≥ l0.

In view of (3.2) this implies

meas((Ω \ Eε) \Mα) ≤ C
αs

.

Letting ε→ 0 we deduce

meas(Ω \ ∪Mα) = lim
α→∞meas(Ω \Mα) = 0

and the proof is finished. �
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Lemma 8 LetΩ be a domain inIRn with L n(Ω) <∞ and uk ∈ W1,1(Ω; IRm).
Suppose that there exist p≥ 1 and s> 0 such that

sup
k∈IIN

∫
|uk |≤α

|Duk |pdx ≤ C(α) <∞ for all α > 0(3.4)

and

sup
k∈IIN

∫
Ω

|uk |sdx ≤ C <∞ .

Then there exist a subsequence ukj and a measurable function u: Ω → IRm such
that

ukj → u in measure.

Moreover u is for almost every x∈ Ω approximately differentiable. For allη ∈
C∞

0 (IRm; IRm) there holdsη ◦ u ∈ W1,p(Ω; IRm). If uk ∈ W1,1
0 (Ω) thenη ◦ u ∈

W1,1
0 (Ω) ∩W1,p(Ω) provided thatη ≡ id on B(0, r ) for some r> 0.

Remark.If C(α) ≤ C ′ (α + 1) andp > 1 then the assertion holds for allη ∈
C1(IRm; IRm) ∩ L∞(IRm; IRm) that satisfy|Dη(y)| ≤ C (1 + |y|)−1. To see this,
it suffices to verify thatD(η ◦ uk) is bounded inLp(Ω). This follows by an
application of (3.4) withα = 2j , j ∈ IIN.

Proof. Choose a subsequence (not relabeled) of the sequence{uk} which gener-
ates a Young measure{νx}x∈Ω . Suppose first in addition thatΩ is such that the
compact Sobolev embeddingW1,p(Ω) ↪→ Lp(Ω) holds. Note that by (3.4)

‖D(Tα(|uk |))‖p
Lp(Ω) ≤ C(α) .

Hence by the compact Sobolev embedding the sequence{Tα(|uk |)} is precompact
in L1 and by Lemma 7 there exists a measurable functionw such that (after
passage to a subsequence)

|uk | → w

in measure. It follows that

sptνx ⊂ Sw(x) = {y ∈ IRm : |y| = w(x)}.(3.5)

Let Mα = {x ∈ Ω : |w(x)| < α} and choose a radially symmetric cut-off function
η ∈ C∞

0 (B(0, 3α); IRm) such thatη ≡ Id on B(0, 2α). Then by (3.4) and by the
compact Sobolev embeddingη(uk) is precompact inLp(Ω) and thus

η(uk) → v in measure.

Hence

sptνx ⊂ η−1(v(x)) .(3.6)

If v(x) /= 0 thenη−1(v(x)) is concentrated on the ray throughv(x) and it follows
from (3.5) and (3.6) thatνx is a Dirac mass. Ifv(x) = 0 then η−1(v(x)) ⊂
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{0}∪ (IRn \B(0, 2α)). For x ∈ Mα one deduces from (3.5) and (3.6) thatνx = δ0.
Henceνx is a Dirac mass for almost everyx ∈ Mα and thus for almost every
x ∈ Ω since∪α>0Mα = Ω \ E whereE is a set of measure zero. Thereforeuk

converges by (2.3) in measure to a measurable functionu.
Now we remove the additional regularity restriction onΩ. Let Ωk ⊂ Ω be a

sequence of Lipschitz domains (choose, e.g., a finite union of balls forΩk) such
that L n(Ω \Ωk) → 0 ask →∞. Application of the previous arguments toΩk

shows thatνx is a Dirac mass for almost everyx ∈ Ωk . Henceνx is a Dirac
mass for almost everyx ∈ Ω anduk → u in measure, whereu(x) := 〈νx , Id 〉.

To see thatu is approximately differentiable, letMα = {x ∈ Ω : |u(x)| < α}.
It suffices to show thatu is almost everywhere approximately differentiable in
Mα for all α > 0. Forη as above we have

η(uk) ⇀ η(u) in W1,p(Ω; IRm).

In particular,η(u) is almost everywhere approximately differentiable. Letx0 ∈
Mα be a point of approximate differentiability ofη(u) and of approximate con-
tinuity of u, i.e.,

lim
r→0

1
r n

meas{x ∈ B(x0, r ) : |u(x)− u(x0)| > δ} = 0, for all δ > 0.

For ε > 0 consider the set

Er ,ε = {x ∈ B(x0, r ) : |u(x)− u(x0)− apD(η ◦ u)(x0)(x − x0)| > εr }.
Then, by the approximate continuity ofu,

lim
r→0

1
r n

meas(Er ,ε ∩ {|u(x)− u(x0)| ≥ α

2
}) = 0,

while

lim
r→0

1
r n

meas(Er ,ε ∩ {|u(x)− u(x0)| < α

2
}) = 0,

sinceu andη ◦ u agree on that set andη ◦ u is approximately differentiable at
x0. Henceu is approximately differentiable atx0 and apDu = ap D(η ◦ u)(x0).

�

Lemma 9 Let uk be as in Lemma 8 with p> 1. Then the Young measureνx

generated by (a subsequence of) Duk has the following properties:

(a) νx is a probability measure for almost every x∈ Ω.
(b) νx has finite p-th moment for almost every x∈ Ω, i.e.,

∫
IIMm×n |λ|pdνx(λ) is

finite for almost every x∈ Ω.
(c) νx satisfies

〈νx , Id 〉 = apDu(x) almost everywhere inΩ.

(d) νx is a homogeneous W1,p-gradient Young measure for almost every x∈ Ω.
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Proof. Let ν̃x denote the Young measure generated by (a subsequence of) the
sequence{(uk ,Duk)}. By Lemma 8 we have

ν̃x = δu(x) ⊗ νx .

Let η ∈ C∞
0 (B(0, 2α); IRm), η ≡ Id on B(0, α), and letνη be the Young measure

generated by
D(η ◦ uk) = (Dη)(uk) Duk .

Thenνηx is a probability measure, has finitep-th moment and

〈νηx , Id 〉 = (D(η ◦ u))(x) = Dη(u(x)) apDu(x) .

It follows for ϕ ∈ C∞
0 (IIMm×n) that

ϕ(D(η ◦ uk)) ⇀ 〈νηx , ϕ〉 =
∫

IIMm×n

ϕ(λ) dνηx (λ) .

Rewriting the left hand side we have on the other hand

ϕ((Dη)(uk) Duk) ⇀

∫
IRm×IIMm×n

ϕ(Dη(ρ)λ) dν̃x(ρ, λ)

=
∫

IIMm×n

ϕ(Dη(u(x))λ) dνx(λ) .

Hence

νηx = νx if |u(x)| < α.(3.7)

Therefore the properties in (a), (b) and (c) hold for almost everyx ∈ {|u| < α}
since they hold forνηx . Taking the union overα > 0 we obtain (a), (b) and (c).

To prove (d) note that∫
Ω

|D(η ◦ uk)|pdx ≤ sup|Dη|p
∫
|uk |≤2α

|Duk |pdx ≤ sup|Dη|p C(2α) .

By the localization principle in [KP] we conclude thatνηx is a homogeneousW1,p-
gradient Young measure for almost everyx ∈ Ω. Thus (d) follows from (3.7)
and the fact thatα was arbitrary. �

4 Approximate solutions and a priori bounds

Throughout this section we assume thatp = q in (H2), i.e., that the growth and
coercivity rate ofσ coincide. In order to establish existence of a solution of (1.1),
(1.2) we introduce the following approximating problems:

−div σ(x, uk(x),Duk(x)) = fk(x) in Ω,(4.1)

uk = 0 on∂Ω.(4.2)
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For fk we choose the standard mollification

fk(x) =
∫

IRn

γk(x − y) dµ(y)

where, fork ∈ IIN, γk(x) = knγ0(kx) with a functionγ0 ∈ C∞
0 (B(0, 1)), γ0 ≥ 0,

‖γ0‖L1 = 1. Thenfk ∈ C∞ ∩ L1 ∩ L∞ for eachk and

fk
∗
⇀ µ in M.

Let A: W1,p
0 (Ω) → W−1,p′ (Ω) denote the operator

A: u 7→
(
v 7→

∫
Ω

σ(x, u(x),Du(x)) : Dv dx
)
.

By (H0) and (H2) this operator is well defined. If we assume for simplicity (see
also the remark below) thatσ only depends onx and Du but not onu then,
by (H1), the operator is monotone, i.e.,

〈A(u)− A(v), u − v〉 ≥ 0 for all u, v ∈ W1,p
0 (Ω)

where〈·, ·〉 denotes the dual pairing ofW1,p
0 andW−1,p′ . The coercivity hypoth-

esis in (H2) implies thatA is coercive, i.e.,〈A(u), u〉 ≥ c(‖u‖W1,p )‖u‖W1,p for
a real valued functionc with limt→∞ c(t) = ∞. On the other hand the growth
condition in (H2) (withq = p) implies thatA is hemicontinuous, i.e., the mapping
t 7→ 〈A(u + tv), w〉 is continuous on the real axis foru, v, w ∈ W1,p

0 (Ω). Then by
a standard theorem for monotone operators (see, e.g., [Va]) it follows thatA is
surjective and hence that (4.1), (4.2) has a solutionuk ∈ W1,p

0 (Ω) for all k ∈ IIN.

Remark.If σ depends explicitly onu or if σ is merely strictlyp-quasimonotone
rather than monotone it is slightly more difficult to show existence of solutions
of (4.1), (4.2). However, using Borsuk’s theorem one can solve (4.1), (4.2) ap-
proximately in finite dimensional subspaces ofW1,p

0 (Ω) and then pass to the
limit by a suitable adaptation of Lemma 13 below.

As in [DHM], one easily derives a priori estimates for the solutionsuk of the
approximating problems.

Lemma 10 LetΩ ⊂ IRn be an open set, f∈ L1(Ω; IRm). Assume thatσ satisfies
(H2) and (H3) with p= q and that u∈ W1,p

0 (Ω; IRm) is a solution of

− div σ(x, u(x),Du(x)) = f(4.3)

in the sense of distributions. Then

u ∈ Ls∗,∞(Ω; IRm) ,

Du ∈ Ls,∞(Ω; IIMm×n)

where
s =

n
n − 1

(p− 1) , s∗ =
ns

n − s
=

n
n − p

(p− 1)
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and

‖Du‖∗Ls,∞ + ‖u‖∗Ls∗,∞ ≤ C(c1, c2, ‖f ‖L1,measΩ).(4.4)

If c2 = 0 the right hand side in (4.4) reduces to C(c1)‖f ‖
1

p−1

L1 .

Proof. We use similar techniques as Talenti [Ta] in connection with quasilinear
elliptic equations and also as Bénilan et al. [BB, Lemma 4.1] for solutions of
the p-Laplace equation. As above define the truncation functionTα by Tα(y) =
min(1, α

|y| ) y. By definition |Tα(y)| ≤ α and

DTα(y) =

{
Id for |y| < α,
α
|y| (Id− y

|y| ⊗ y
|y| ) for |y| > α.

Testing (4.3) withTα(u) and observing (H2) and (H3), we obtain

c1

∫
|u|<α

|Du|pdx ≤ α‖f ‖L1(Ω) + c2meas(Ω) .(4.5)

Using the fact that|Du| ≥ |D |u|| and defininguα = min(|u|, α), we obtain from
the Sobolev embedding theorem that

c
∫
Ω

|uα|p∗dx ≤ (α‖f ‖L1(Ω) + c2meas(Ω))p∗/p.

Hence we may estimate the distribution functionλ|u| of |u| by

λ|u|(α) ≤ α−p∗
∫
Ω

|uα|p∗dx

≤ c max(α−s∗‖f ‖p∗/p
L1(Ω) , (c2measΩ)p∗/pα−p∗ )

and trivially
λ|u|(α) ≤ measΩ.

The combination of these two estimates implies

‖u‖∗Ls∗,∞ ≤ C max(‖f ‖
1

p−1

L1 , c
1
p

2 (measΩ)
1
s ).(4.6)

From (4.5) and (4.6) one deduces that the distribution functionλ|Du| satisfies for
all α > 0

λ|Du|(β) ≤ 1
βp

∫
|u|<α

|Du|pdx + λ|u|(α)

≤ c
βp

(α‖f ‖L1 + c2measΩ) +

+c max(α−s∗‖f ‖p∗/p
L1(Ω) , (c2measΩ)p∗/pα−p∗ ).

Choosingα = β
n−p
n−1 and observing thatλ|Du| ≤ measΩ we deduce (4.4). Re-

peating the proof withc2 = 0 we easily establish the form of the constant in that
particular case. �
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5 A div-curl inequality

The result of this section is the key ingredient for the proof that one can pass to the
limit in the equation (4.1) for the solutions{uk}k∈IIN of approximating problems.
Since it is independent of the differential equation we state it in a more general
form using only the hypotheses (5.1)–(5.7) below. Using Lemmata 8 and 10 it
is easily verified that they hold under the assumptions in Section 4.

(5.1) σ : Ω × IRm × IIMm×n → IIMm×n is a Carath́eodory function.
(5.2) σ(x, u,F ) : MF ≥ 0 holds for all matricesM = Id − b ⊗ b ∈ IIMm×m

with |b| ≤ 1.
(5.3) uk ∈ W1,1(Ω; IRm) and there exists ans > 0 such that

∫
Ω
|Duk |sdx ≤ C

uniformly in k.
(5.4) The sequenceσk(x) = σ(x, uk(x),Duk(x)) is equiintegrable.
(5.5) The sequenceuk converges in measure to some functionu, andu is almost

everywhere approximately differentiable.
(5.6) The sequencefk := −div σk is bounded inL1(Ω).
(5.7) Duk ∈ Lr

loc andσk ∈ Lr ′
loc for somer , 1< r <∞.

Remark.Assumption (5.2) coincides with condition (A5) in [La] ifσ(x, u,F ) :
F ≥ 0. This condition could be relaxed toσ(x, u, p) : Mp ≥ −C |p|β if the
sequence|Duk |β is equiintegrable.

We may assume (after passing to a suitable subsequence if necessary) that
{Duk} generates a Young measureν. It follows from Theorem 5(iii) and (5.3)
that νx is a probability measure for almost everyx ∈ Ω.

Lemma 11 Suppose (5.1)–(5.7). Then (after passage to a subsequence) the se-
quenceσk converges weakly in L1(Ω) and the weak limit̄σ is given byσ̄(x) =
〈νx , σ(x, u(x), ·)〉. Moreover the following inequality holds:∫

IIMm×n

σ(x, u(x), λ) : λ dνx(λ) ≤ σ̄(x) : apDu(x) for a.e. x∈ Ω.

Remarks.1) The assertion of Lemma 11 follows (with equality) directly from
the div-curl lemma (see [Mu1], [Tar]) iffk = 0, if {uk} is bounded inW1,p(Ω)
and if {σk} is bounded inLp′ (Ω) with 1 < p <∞.

2) If the sequence{Duk} is equiintegrable then, by Theorem 5(iii),Du(x) =
apDu(x) = 〈νx , Id 〉 almost everywhere.

Proof.Choose a non-negative functionα1 ∈ C∞([ 0,∞))∩L∞([ 0,∞)) such that
α1 = Id on [ 0, δ) for someδ > 0, α′1 ≥ 0 and

α′1(s)s ≤ α1(s) for s ≥ 0.(5.8)

One possible choice isα1(s) = s for 0≤ s ≤ δ and

α1(s) = δ exp(
∫ s

δ

ε(ξ)
ξ

dξ ) for s > δ
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where theC∞-function ε ∈ L1([ δ,∞); [ 0, 1 ]) satisfiesε(δ) = 1 andε(n)(δ) = 0
for all n ≥ 1. Then let

ψ1(z) = α1(|z|) z
|z| for z ∈ IRm,(5.9)

and chooseϕ1 ∈ C∞
0 (Ω; IR) with ϕ1 ≥ 0 and

∫
IRn ϕ1 dx = 1. The idea is to

multiply the equation in (5.6) byϕ1ψ1 ◦ (uk − v) wherev ∈ C1(Ω; IRm) is a
suitable comparison function and to useϕ1 to localize the resulting equation∫

Ω

σk : D(ϕ1ψ1(uk − v))dx =
∫
Ω

fkϕ1ψ1(uk − v)dx(5.10)

in x. We first estimate the left hand side in (5.10). Let

hk := σk : D(ϕ1ψ1(uk − v))

= σk : ψ1(uk − v)⊗ Dϕ1 + σk : Dψ1 ◦ (uk − v) D(uk − v)ϕ1

and let{µx}x∈Ω be the Young measure generated by the sequence{uk ,Duk}.
Then, by (5.5) and (2.4),

µx = δu(x) ⊗ νx

and thus by (5.4) and (2.2)

σk ⇀ σ̄ weakly in L1(Ω)

with

σ̄(x) =
∫

IRm×IIMm×n

σ(x, ρ)dµx(ρ) =
∫

IIMm×n

σ(x, u(x), λ)dνx(λ) .(5.11)

Note that

Dψ1(z) = (Id − θ ⊗ θ)
α1(|z|)
|z| + θ ⊗ θ α′1(|z|)

=
α1(|z|)
|z| (Id − (1− α′1(|z|)|z|

α1(|z|) )θ ⊗ θ),

whereθ = z
|z| . By (5.2) and (5.8) we have

σ(x, uk ,Duk) : Dψ1 ◦ (uk − v) Duk ≥ 0(5.12)

and therefore we conclude that the sequence (hk)− is equiintegrable. By Lemma 6
and (5.5) we deduce

(5.13) lim inf
k→∞

∫
Ω

hk dx ≥
∫
Ω

σ̄ : ψ1(u − v)⊗ Dϕ1 dx

+
∫
Ω

ϕ1

∫
IIMm×n

σ(x, u(x), λ) : Dψ1 ◦ (u − v)(λ− Dv(x))dνx(λ)dx.
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To obtain the first term on the right hand side we used the fact that for two
sequencesfk and gk with fk ⇀ f weakly in Lr , r ≥ 1, andgk → g boundedly
almost everywhere, the productfk gk converges weakly tof g in Lr which is
easily verified using Egoroff’s theorem and the Lebesgue dominated convergence
theorem. To estimate the right hand side in (5.10) note that by (5.6) (after passage
to a subsequence if necessary)

|fk | ∗
⇀ µ̄ in M(Ω)

and thus

lim sup
k→∞

|
∫
Ω

hk dx| = lim sup
k→∞

|
∫
Ω

fk ψ1(uk − v)ϕ1 dx|(5.14)

≤ sup
IRm

|ψ1|〈µ̄, ϕ1〉 .

Let x0 be a point of approximate differentiability ofu and a Lebesgue point of
the measure ¯µ and the function ¯σ, i.e.,

lim sup
r→0

µ̄(B(x0, r ))
r n

<∞,(5.15)

lim sup
r→0

∫
B(x0,r )
− |σ̄(x)− σ̄(x0)| dx = 0.(5.16)

In addition we may assume thatx0 is a Lebesgue point of the functionsgM
ijlm

defined in (5.20) below. In order to localize the equation inx we define the
rescaled cut-off functions

ϕr (x) = r−nϕ1(
x − x0

r
),

whereϕ1 ∈ C∞
0 (B(0, 1); IR) is non-negative with

∫
IRn ϕ1 = 1, and

ψr (x) =
αr (x)
|x| x with αr (x) = r α1

( |x|
r

)
.

Then inequality (5.12) holds forψr , r > 0, since (5.8) is invariant under this
scaling. Finally let

z =
1
r

(x − x0)

denote the scaled coordinates aroundx0 and let

ũr (z) =
1
r

(u(x)− v(x)),

σ̃r (z) = σ̄(x).

Then (5.11), (5.13) and (5.14) yield
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LHS (r ) :=
∫
Ω

ϕr (x)
∫

IIMm×n

σ(x, u(x), λ) : (Dψr (u − v)(x)λ)dνx(λ)dx(5.17)

≤ r sup|ψ1| supϕ1 r−nµ̄(B(x0, r ))

−
∫

B(0,1)
σ̄(x0 + rz) : ψ1(ũr (z))⊗ Dϕ1(z) dz

+
∫

B(0,1)
ϕ1(z) σ̄(x0 + rz) : Dψ1(ũr (z))Dv(rz + x0) dz =: RHS (r ) .

Choosing the functionv as the first order Taylor approximation ofu in x0, i.e.,

v(x) = u(x0) + apDu(x0)(x − x0)

we obtain by the approximate differentiability ofu and (5.16) that forr → 0

ũr → 0 in measure inB(0, 1),

σ̃r → σ̄(x0) in L1(B(0, 1)),

and hence (at least for a subsequence)

ψ1 ◦ ũr → 0 boundedly almost everywhere,

Dψ1 ◦ ũr → Id boundedly almost everywhere.(5.18)

Thus we conclude

RHS (r ) → σ̄(x0) : apDu(x0) as r → 0.(5.19)

(and in fact the whole sequencer → 0 converges as the approximate differential
is independent of the sequence).

The passage to the limitr → 0 on the left hand side of (5.17) is slightly
more difficult since the functionsgijlm defined by

gijlm (x) =
∫

IIMm×n

σij (x, u(x), λ)λlmdνx(λ)

are in general not inL1(Ω). The remedy here is to define the truncated functions

gM
ijlm (x) =

∫
IIMm×n

η(
|λ|
M

)σij (x, u(x), λ)λlmdνx(λ) for M = 1, 2, . . .(5.20)

where η ∈ C∞
0 (B(0, 1); [0, 1]) denotes a fixed function satisfyingη ≡ 1 on

B(0, 1
2). Note that for every fixedM the sequenceσij (x, uk(x),Duk(x))(Duk(x))lm

×η( |Duk (x)|
M ) is equiintegrable (sinceσk is equiintegrable) and therefore its weak

L1-limit is given by gM
ijlm . By (5.2) we have

σ(x, u(x), λ) : Dψ(u(x)− v(x))λ ≥ 0

and thus the left hand side in (5.17) is estimated by
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LHS (r ) =
∫
Ω

ϕr (x)gijlj (x)(Dψr )il (u − v)(x)dx

≥
∫
Ω

ϕr (x)gM
ijlj (x)(Dψr )il (u − v)(x)dx ,(5.21)

where we take the sum over all repeated indices. Let ˜gijlm ,r (z) = gijlm (x) and
g̃M

ijlm ,r (z) = gM
ijlm (x) denote the rescaled functions as above. Sincex0 was chosen

to be a Lebesgue point ofgM
ijlm we have

g̃M
ijlm ,r (z) → gM

ijlm (x0) in L1(B(0, 1)) for r → 0.(5.22)

Using (5.21), (5.22), (5.18) and (5.19) we therefore obtain∫
IIMm×n

η(
|λ|
M

)σ(x0, u(x0), λ) : λ dνx0(λ) = gM
ijij (x0)

≤ σ̄(x0) : apDu(x0)

for all M ∈ IIN. Choosingb = 0 in (5.2) we inferσ(x0, u(x0), λ) : λ ≥ 0 and
Lemma 11 follows by the monotone convergence theorem. �

6 Compactness and existence of solutions

In this section we use the div-curl inequality in Lemma 11 to show that the
approximate solutionsuk constructed in Section 4 converge to a solutionu of the
equation (1.1). The key point here is to identify the weak limit ¯σ = σ(·, u, apDu)
of the sequenceσk = σ(·, uk ,Duk) and to prove the identity

apDu(x) = 〈νx , Id 〉 for almost everyx ∈ Ω,(6.1)

whereν is the gradient Young measure generated by the sequence{Duk}k∈IIN.
We first need the additional assumption (6.1). This will be later removed by

Lemma 9 and the a priori estimates of Section 4.

Lemma 12 Suppose that the sequence{uk}k∈IIN satisfies the hypotheses (5.1)–
(5.7) and that the Young measureν generated by the sequence{Duk}k∈IIN satisfies
the identity (6.1). Assume that one of the following structure conditions holds:

(i) σ is monotone and the mapping F7→ σ(x, u,F ) is continuously differentiable
for all (x, u) ∈ Ω × IRm.

(ii) σ(x, u, p) = ∂W
∂p (x, u, p) and p 7→ W(x, u, p) is a convex C1-function for all

(x, u) ∈ Ω × IRm.
(iii) p 7→ σ(x, u, p) is strictly monotone for all(x, u) ∈ Ω × IRm.

Thenσ̄(x) = σ(x, u(x), apDu(x)). If (ii) or (iii) holds then

σ(x, uk(x),Duk(x)) → σ(x, u(x), apDu(x)) strongly in L1(Ω).

In case (iii) it follows in addition that Duk → apDu in measure.
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Proof.We suppress throughout the proof the dependence onx andu, i.e., we write
σ(λ) = σ(x, u(x), λ) and ν = νx . Fix x ∈ Ω such that (6.1) and the conclusion
of Lemma 11 hold and let̄λ = 〈ν, Id 〉 = apDu(x). We may assume by an affine
transformation that̄λ = 0 andσ(λ̄) = 0. Then by Lemma 11∫

IIMm×n

σ(λ) : λ dν(λ) ≤ 0 .

By the monotonicity ofσ we have

σ(λ) : λ ≥ 0

whence

σ(λ) : λ = 0 on sptν(6.2)

and thus

sptν ⊂ {λ | σ(λ) : λ = 0}.(6.3)

Case 1:Suppose that (i) holds. We claim that in this case the following identity
holds on sptν:

σ(λ) : µ = −(Dσ(0)µ) : λ.

Indeed, by the monotonicity ofσ we have for allt ∈ IR

(σ(λ)− σ(tµ)) : (λ− tµ) ≥ 0,

whence

σ(λ) : λ− σ(λ) : (tµ) ≥ σ(tµ) : λ− σ(tµ) : (tµ)

= (Dσ(0)µ) : (tλ) + o(t).

The claim follows from this inequality using (6.3) since the sign oft is arbitrary.
Thus

σ̄ =
∫

sptν
σ(λ)dν(λ) = −(Dσ(0))t

∫
sptν

λdν(λ)

= −(Dσ(0))t λ̄ = 0 = σ(λ̄).

Case 2:Suppose that (ii) holds. We may assume in addition thatW(λ̄) = 0. We
first show that the support ofν is contained in the set whereW agrees with the
supporting hyper-planeW(λ̄) + σ(λ̄)(λ− λ̄) ≡ 0 in λ̄:

sptν ⊂ K = {λ ∈ IIMm×n : W(λ) = 0}.
If λ ∈ spt ν then by (6.3)σ(λ) : λ = 0 and it follows from the monotonicity
of σ that σ(tλ) : λ = 0 for all t ∈ [ 0, 1 ]. HenceW(λ) =

∫ 1
0 σ(tλ)λdt = 0 as

claimed.
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By the convexity ofW we haveW(p) ≥ 0 for all p ∈ IIMm×n and thusL ≡ 0
is a supporting hyper-plane for allλ ∈ K . Since the mappingp 7→ W(p) is by
assumption continuously differentiable we obtain

σ(λ) = 0 = σ(λ̄) for all λ ∈ K ⊃ sptν(6.4)

and thus

σ̄ =
∫

IIMm×n

σ(λ) dν(λ) = σ(λ̄) .(6.5)

Now consider the Carathéodory function

g(x, u, p) = |σ(x, u, p)− σ̄(x)| .
The sequencegk(x) = g(x, uk(x),Duk(x)) is by (5.4) equiintegrable and thus

gk ⇀ ḡ weakly in L1(Ω)

and the weak limit ¯g is given by

ḡ(x) =
∫

IRm×IIMm×n

|σ(x, η, λ)− σ̄(x)| dδu(x)(η)⊗ dνx(λ)

=
∫

sptν
|σ(x, u(x), λ)− σ̄(x)| dνx(λ) = 0

by (6.4) and (6.5). Sincegk ≥ 0 it follows that

gk → 0 strongly inL1(Ω)

and the proof of the second case is finished.
Case 3:Suppose that (iii) holds. In this case (6.2) implies by the strict mono-

tonicity of σ that

ν = δλ̄ = δapDu(x).

Thus Duk converges in measure to apDu and the result follows by Vitali’s
convergence theorem using the equiintegrability (5.4) ofσk . �
Lemma 13 Suppose that the sequence{uk}k∈IIN satisfies the hypotheses (5.1)–
(5.7) and the inequality∫

|uk |≤α
|Duk |pdx ≤ C(α).

Assume in addition that the Young measureν generated by the sequence{Duk}k∈IIN

is a W1,p gradient Young measure and thatν satisfies the identity (6.1). Assume
finally thatσ(x, u, ·) is strictly p-quasimonotone for almost every x∈ Ω and all
u ∈ IRm. Thenσ̄(x) = σ(x, u(x), apDu(x)), Duk → apDu in measure and

σ(x, uk(x),Duk(x)) → σ(x, u(x), apDu(x)) strongly in L1(Ω).
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Proof. Since νx is for almost everyx ∈ Ω a homogeneous gradient Young
measure (see Lemma 9) we deduce from the definition of the strictp-quasimono-
tonicity of σ that∫

IIMm×n

σ(x, u(x), λ)λdνx(λ) ≥
∫

IIMm×n

σ(x, u(x), λ)dνx(λ)

×
∫

IIMm×n

λdνx(λ) = σ̄(x)apDu(x).(6.6)

On the other hand Lemma 11 implies that in fact equality holds in (6.6) and
thus by (6.1)νx = δapDu(x). The result follows now as in Case 3 in the proof of
Lemma 12. �

Proof of Theorem 2 and Corollary 4.We give the proof first for the case that
σ has the same growth and coercivity rate, i.e.,p = q. The general result follows
from this case using an approximation ofσ.

Case 1: p= q. The solutionsuk of the approximate problems (4.1)

− div σ(x, uk(x),Duk(x)) = fk(x) in Ω(6.7)

satisfy the a priori bounds (4.4)

‖Duk‖∗Ls,∞ + ‖uk‖∗Ls∗,∞ ≤ C(c1, c2, ‖fk‖L1,measΩ).

with s, s∗ > 0 as well as the estimate (4.5)∫
|u|<α

|Duk |pdx ≤ C(α).

In view of the embeddingLβ,∞ ↪→ Lα for 0 < α < β the assumptions of Lemma
8 and Lemma 9 are satisfied. Thus there exists a measurable functionu : Ω →
IRm such that (for a subsequence)uk → u in measure and〈νx , Id 〉 = ap Du(x)
for almost everyx ∈ Ω whereν denotes the Young measure generated by the
sequence{Duk}. It follows from (H0), (H2) and (H3) that the hypothesis (5.1)–
(5.7) in the div-curl inequality (Lemma 11) are fulfilled and by Lemma 12 and
Lemma 13 we deduce the weak convergence ofσ(·, uk ,Duk) to σ(·, u, apDu) in
L1. Thus we can pass to the limit in (6.7) and obtain

−div σ(·, u, apDu) = f in D ′(Ω),

i.e., u is a solution of the equation in the sense of Definition 1. Note that ifp >
2− 1

n then the sequence{Duk} is equiintegrable and consequently apDu(x) =
Du(x) = 〈νx , Id 〉 for almost everyx ∈ Ω, i.e.,u is a solution of the equation and
apDu agrees with the usual weak derivative ofu. It remains to prove the a priori
estimate (1.3) foru. Choose a cut-off functionη ∈ C1

0 (B(0, 2α)) such thatη ≡ Id
on B(0, α) and |Dη| ≤ C whereC is independent ofα. Sinceη(uk) ⇀ η(u) in
W1,p and apD(η ◦ u) = ap Du on {|u| < α} (see the proof of Lemma 8) we
deduce
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Ω

|D(η ◦ u)|pdx ≤ lim inf
k→∞

∫
|uk |≤2α

|Dη|p|Duk |pdx ≤ C(α)

and thus ∫
|u|<α

|apDu|pdx ≤ C(α).

The estimate foru in the weak Lebesgue spaces follows now as in Section 4.
Case 2:The general casep−1≤ q−1 < n

n−1(p−1). The idea is to consider
the regularized problems

−div σε(x, uε(x),Duε(x)) = µ in Ω,(6.8)

uε = 0 on∂Ω(6.9)

with
σε(x, u,F ) := σ(x, u,F ) + ε|F |s−2F

for somes > n + 1 andε < 1
2. Thenσε satisfies (H0)–(H3) with coercivity and

growth rate both equal tos, i.e.,

σε(x, u,F ) : F ≥ ε|F |s,
|σε(x, u,F )| ≤ |F |s−1 + k(c3, s, q) .

Using the results in Case 1 we find a solutionuε ∈ W1,s
0 (Ω) of (6.8), (6.9).

Testing (6.8) withuε yields

ε

∫
Ω

|Duε|sdx ≤ 〈uε, µ〉 ≤ ‖uε‖L∞(Ω)‖µ‖M .

Using Sobolev’s embedding theorem

‖uε‖L∞(Ω) ≤ C ‖Duε‖Ls(Ω)

we conclude

‖Duε‖Ls(Ω) ≤ (
C ‖µ‖M

ε
)

1
s−1 ,

‖uε‖L∞(Ω) ≤ C(
C ‖µ‖M

ε
)

1
s−1

and

‖ε|Duε|s−1‖
L

s
s−1 (Ω)

≤ C‖µ‖M .(6.10)

By testing equation (6.8) withTα(uε) we obtain, as in Lemma 10, that

‖Duε‖∗
L

n
n−1 (p−1),∞ (Ω) ≤ C

for a constantC which does not depend onε. Thus, in combination with (6.10),
we have that for allρ < s

s−1
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lim
ε→0

‖ε |Duε|s−1‖Lρ(Ω) = 0

and hence in particular

‖σε(x, uε,Duε)− σ0(x, uε,Duε)‖L1(Ω) → 0 asε→ 0.(6.11)

Thus the weakL1-limit σ̄0 of the sequenceσ0(·, uε,Duε) satisfies the equation

−div σ̄0 = µ in D ′(Ω).

If we test (6.8) withψ ◦ (uε − v)ϕ (ψ andϕ as in Section 5) we obtain

sup
Ω
|ψ| 〈|µ|, ϕ〉 ≥∫

Ω

(
σε(x, uε,Duε) : (Dψ)(uε − v)Duεϕ

−σε(x, uε,Duε) : (Dψ)(uε − v)Dvϕ

+σε(x, uε,Duε) : ψ(uε − v)⊗ Dϕ
)

dx .

By definition

σε(x, uε,Duε) : (Dψ)(uε − v)Duεϕ ≥ σ0(x, uε,Duε) : (Dψ)(uε − v)Duεϕ

and thus (6.11) implies

sup
Ω
|ψ| 〈|µ|, ϕ〉 ≥

lim sup
ε→0

∫
Ω

(
σ0(x, uε,Duε) : (Dψ)(uε − v)Duεϕ

−σ0(x, uε,Duε) : (Dψ)(uε − v)Dvϕ

+σ0(x, uε,Duε) : ψ(uε − v)⊗ Dϕ
)

dx .

Sinceq−1 < n
n−1(p−1), the sequenceσ0(x, uε,Duε) is equiintegrable inL1(Ω)

and the arguments in Section 5 apply. �

7 The critical casep = n

In this section we prove that solutions of the elliptic system (1.1) are bounded
in BMOloc(Ω) for p = q = n. Our proof is strongly inspired by Simon’s beautiful
proof of C0,α estimates for the Poisson equation by scaling and compactness
(see [Si1]). Here we say thatu ∈ BMOloc(Ω) if u ∈ L1

loc(Ω) and for all open
U ⊂⊂ Ω there exists a constantC(U ) such that

[ u ]n
BMO(U ,Ω) = sup

y∈Ū
sup

Q(y,R)⊂Ω

1
Rn

∫
Q(y,R)

|u(x)− uy,R|ndx ≤ C(U ),

where uy,R denotes the mean value ofu on the cubeQ(y,R). In Lemma 14
we first show a localized version of the a priori bound (4.5) for solutionsu ∈
W1,n

0 (Ω; IRm) of the approximating system
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− div σ(x, u(x),Du(x)) = f(7.1)

with f ∈ L1(Ω; IRm). Since such a result does not seem to hold forq > n we
restrict ourselves to the caseq = n = p in this section.

Lemma 14 Let u ∈ W1,n(Ω; IRm) be a solution of system (7.1) with f∈
L1(Ω; IRm). Then there exist constants C0, C1 such that the inequality∫

|u − β| < α
∩Q(y,R/2)

|Du|ndx

≤ C0

Rn

∫
Q(y,R)\Q(y,R/2)

|u − β|ndx + C1(α‖f ‖L1(Ω) + Rn)(7.2)

holds for all cubes Q(y,R) ⊂ Ω and all β ∈ IRm.

Proof. Let η ∈ C∞
0 (Ω) be a cut-off function such thatη ≡ 1 on Q(y,R/2),

0 ≤ η ≤ 1 and|Dη| ≤ C/R. Choose a smooth functionaα : IR → IR with the
following properties:aα ≡ Id on [ 0, α ], 0 ≤ aα ≤ nα, a′α ≤ 1 and

0 < c

(
aα(s)

s

)n/(n−1)

≤ a′α(s) ≤ aα(s)
s

on (0,∞).(7.3)

A possible choice is

aα(s) =

 s for s ≤ α,

α +
∫ s

α

(α
t

)n/(n−1)
dt for s > α.

Define the cut-off functionϕα in the target by

ϕα(z) =
aα(|z|)
|z| z.

Then

D(ϕα ◦ v) =
aα(|v|)
|v|

(
Id− v

|v| ⊗
v

|v|
)

Dv + a′α(|v|)
(

v

|v| ⊗
v

|v|
)

Dv,

and by (7.3), (H2) and (H3)

σ(Dv) : D(ϕα ◦ v) ≥ σ(Dv) : Dv a′α(|v|) ≥ a′α(c1|Dv|n − c2).

Testing the equation (7.1) withηnϕα ◦ (u − β) we obtain∫
Ω

ηnσ(Du) : D [ϕα ◦ (u − β)]dx =

= −
∫
Ω

nηn−1σ(Du) : ϕα ◦ (u − β)⊗ Dηdx +
∫
Ω

ηnf ϕα ◦ (u − β)dx.

It follows by (H2) with p = q = n and by using Ḧolder’s inequality and (7.3) on
the right hand side that
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Ω

ηn|Du|na′α(|u − β|) dx

≤ C
R

(∫
Q(y,R)

ηn(c3|Du| + c2)na′α(|u − β|) dx

)(n−1)/n

×

×
(∫

Q(y,R)\Q(y,R/2)
|u − β|ndx

)1/n

+ Cα‖f ‖L1(Ω) + CRn.

Application of Young’s inequality yields∫
Ω

ηna′α(|u − β|)|Du|ndx ≤ C0

Rn

∫
Q(y,R)\Q(y,R/2)

|u − β|ndx

+C1(α‖f ‖L1(Ω) + Rn),

and inequality (7.2) follows from the definition ofaα. �
The following lemma shows that a function satisfying an inequality like (7.2)

is a function of locally bounded mean oscillation.

Lemma 15 Let Ω ⊂ IRn be open, u∈ W1,n(Ω; IRm) and suppose that the esti-
mate∫

|u − β| < α
∩Q(y,R/2)

|Du|ndx ≤ C0

Rn

∫
Q(y,R)\Q(y,R/2)

|u − β|ndx + C1(α + Rn)(7.4)

holds for all cubes Q(y,R) ⊂ Ω and all β ∈ IRm. Then u∈ BMOloc(Ω) and

[ u ]BMO(U ,Ω) ≤ C2 (1 +‖u‖Ln(Ω)),

where C2 depends only on C0, C1, and U .

Proof. It suffices to show that‖u‖Ln(Ω) ≤ 1 implies [u]BMO(U ,Ω) ≤ C2. Indeed,
if ‖u‖Ln(Ω) > 1, observe that ˜u := u

1+‖u‖Ln (Ω)
satisfies (7.4) and that the estimate

[ũ]BMO(U ,Ω) ≤ C2 implies the assertion. Now suppose for a contradiction that
there is a sequenceuk such that‖uk‖Ln(Ω) ≤ 1 and [uk ]BMO(U ,Ω) → ∞ for
k →∞. Thus there existxk ∈ Ū and rk > 0 such thatQ(xk , rk) ⊂ Ω and

1
r n

k

∫
Q(xk ,rk )

|uk − (uk)xk ,rk |n dx ≥ 1
2

[ uk ]BMO(U ,Ω).

We deduce thatrk → 0 since‖uk‖Ln(Ω) ≤ 1. Define the rescaled functions
vk : Ωk = 1

rk
(−xk + Ω) → IRm by

vk(z) =
uk(xk + rkz)− (uk)xk ,rk

[ uk ]BMO(U ,Ω)
,

and letUk = 1
rk

(−xk + U ). Thenvk ∈ BMOloc(Ωk), [ vk ]BMO(Uk ,Ωk ) = 1,∫
Q(0,1)

vk dx = 0,
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and ∫
Q(0,1)

|vk − (vk)0,1|n dx ≥ 1
2
.

Using (7.4) we obtain the following inequality for the rescaled functionsvk :∫
|vk − β| < α
∩Q(y,R/2)

|Dvk |ndx ≤ C0

Rn

∫
Q(y,R)\Q(y,R/2)

|vk − β|ndx +
C1(α + (rkR)n)

[ uk ]n−1
BMO(U ,Ω)

for all Q(y,R) ⊂ Ωk and all β ∈ IRm. We claim that the sequence{vk} is
bounded inW1,s

loc for all s < n. To see this, fixR0 > 0 and choosek0 big enough
such thatQ(0, 2R0) ⊂ Ωk for all k ≥ k0. Choosingy = 0 andβ = (vk)0,2R0 we
obtain from the inequality above∫

|vk − (vk )0,2R0
| < α

∩Q(0,R0)

|Dvk |ndx ≤ C [ vk ]n
BMO(Uk ,Ωk ) +

C1(α + (rkR0)n)

[ uk ]n−1
BMO(U ,Ω)

.

Since

|(vk)0,2R0| = |(vk)0,2R0 − (vk)0,1| ≤ C(| ln R0| + 1)[ vk ]BMO(Uk ,Ωk ) ≤ C(| ln R0| + 1)

we deduce withγ(t) = C(| ln t | + 1)∫
|vk | < α− γ(R0)
∩Q(0,R0)

|Dvk |ndx ≤ C +
C1(α + (rkR0)n)

[ uk ]n−1
BMO(U ,Ω)

.

This implies∫
|vk | < α/2
∩Q(0,R0)

|Dvk |ndx ≤ C + C(α + (rkR0)n) for α ≥ 2γ(R0)

and the idea is to use the methods in Section 4 to boundvk and Dvk in the
weak Lebesgue spacesLp∗,∞ and Lp,∞ for all p < n. Define the truncation
function Tα as in Section 4 byTα(y) = min{1, α

|y|}y. From |(vk)0,R0| < C(R0)
and [vk ]BMO(Uk ,Ωk ) ≤ 1 we deduce∫

Q(0,R0)
|Tα(vk)|ndx ≤

∫
Q(0,R0)

|vk |ndx

≤ C
∫

Q(0,R0)
|vk − (vk)0,R0|ndx + C

∫
Q(0,R0)

|(vk)0,R0|ndx

≤ CRn
0 + C(R0)Rn

0

and
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Q(0,R0)

|D(Tα(vk))|ndx ≤
∫
|vk | < α
∩Q(0,R0)

|Dvk |ndx

+
∞∑
l =0

∫
2lα ≤ |vk | < 2l +1α
∩Q(0,R0)

|D(Tα(vk))|ndx

≤
∫
|vk | < α
∩Q(0,R0)

|Dvk |ndx

+C
∞∑
l =0

1
2ln

∫
|vk | < 2l +1α
∩Q(0,R0)

|Dvk |ndx

≤ C + C(α + (rkR0)n).

Sobolev’s embedding theorem yields for allp < n

∫
|vk | < α
∩Q(0,R0)

|vk |p∗dx ≤
(∫

Q(0,R0)
|Tα(vk)|p + |D(Tα(vk))|p

)p∗/p

≤ C(R0)(αp∗/n + 1).

Using the same arguments as in Section 4 we obtain for alls < n

‖vk‖W1,s(Q(0,R0)) ≤ C(R0, s).

In particular there exists a subsequence (not relabeled) such that

vk → v in Lq
loc(IRn) for all q <∞

and

∫
Q(0,1)

v dx = 0.(7.5)

Choose a cut-off functionϕα ∈ C∞
0 (B(0, 2α)) such thatϕα ≡ Id on B(0, α) and

|Dϕα| ≤ C̄ where the constant̄C is independent ofα. Thenϕα ◦ (vk − β) is
bounded inW1,n

loc (IRn) and converges toϕα ◦ (v − β) in Lp
loc(IRn) for all p <∞

while D(ϕα ◦ (vk −β)) converges weakly inLn
loc(IRn) to D(ϕα ◦ (v−β)). By the

lower semicontinuity of theLn-norm we obtain
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|v − β| < α
∩Q(y,R0/2)

|Dv|ndx ≤
∫

Q(y,R0/2)
|D(ϕα ◦ (v − β))|ndx

≤ lim inf
k→∞

∫
Q(y,R0/2)

|D(ϕα ◦ (vk − β))|ndx

≤ C̄ lim inf
k→∞

∫
|v − β| < 2α
∩Q(y,R0/2)

|Dvk |ndx

≤ C̄ C0 lim inf
k→∞

{
1

Rn
0

∫
Q(y,R0)\Q(y,R0/2)

|vk − β|ndx +
C̄ C1(α + (rkR0)n)

[ uk ]n−1
BMO(U ,Ω)

}

= C̄ C0
1

Rn
0

∫
Q(y,R0)\Q(y,R0/2)

|v − β|ndx.

Using the monotone convergence theorem we may pass to the limitα→∞ and
get ∫

Q(y,R/2)
|Dv|ndx ≤ C̄ C0

1
Rn

∫
Q(y,R)\Q(y,R/2)

|v − β|ndx.(7.6)

If we chooseβ = (v)y,R then the right hand side in this inequality is estimated by
[ v ]BMO ≤ 1 since theBMO-norm is lower semicontinuous. ThusDv ∈ Ln(IRn).
Application of Poincaŕe’s inequality to the right hand side of (7.6) shows∫

Q(y,R/2)
|Dv|ndx ≤ C

∫
Q(y,R)\Q(y,R/2)

|Dv|ndx,

whereC is independent ofR. It follows for R→∞ that Dv ≡ 0 and in view of
(7.5) thatv ≡ 0. On the other hand the strong convergence ofvk in Ln implies
that

1
2
≤
∫

Q(0,1)
|vk − (vk)0,1|ndx →

∫
Q(0,1)

|v − (v)0,1|ndx

This is a contradiction and the lemma is proven. �
Theorem 16 Assume that the hypotheses in Theorem 2 are satisfied with p= q =
n. Then the system (1.1), (1.2) has a solution u∈ BMOloc(Ω; IRm)∩W1,s

0 (Ω; IRm)
for all s < n in the sense of Definition 1 and the a priori estimate

‖u‖BMO(U ,Ω) + ‖u‖W1,s(Ω) ≤ C(s,U , ‖µ‖M)

holds for all s< n and all open U⊂⊂ Ω.

Proof. Consider the solutionsuk of the approximating system (4.1), (4.2). Using
the same methods as in Section 4 one obtains‖uk‖W1,s(Ω) ≤ C(s) for all s < n
and thusuk converges weakly tou in W1,s(Ω) for all s < n and strongly in
Lp(Ω) for all p <∞. By Lemmata 14 and 15

[ uk ]BMO(U ,Ω) ≤ C(U , ‖µ‖M)

for all openU ⊂ Ω and due to the strong convergence ofuk in Ln we may pass
to the limit in this inequality. �
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