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1 Introduction
We consider existence and compactness questions for elliptic systems of the form

(1.1) —div o(x, u(x),Du(x)) = p in £2,

(1.2) u=0 onas?

with measure-valued right hand side on an open, bounded dofhainR". We
assume that satisfies the following hypotheses (H0)-(H3). H&VE"IK" denotes
the space of reah x n matrices equipped with the inner prodidt: N = M; N;

(we use the usual summation convention) and the tensor praededd of two
vectorsa,b € R™ is defined to be the matriva(b; )i j=1,... m-

(HO) (continuity)o: 2 x R™ x M™" — IM™*" is a Caratkodory function,
i.e., X — o(X,u,p) is measurable for everyu(p) and {,p) — o(x,u,p)
is continuous for almost every € {2.

(H1) (monotonicity) For allk € £2, u € R™ and allF, G € M™ " there holds

(c(x,u,F) —o(x,u,G)) : (F—-G)>0.

(H2) (coercivity and growth) There exist constaniscs > 0, ¢c; > 0 andp, q
withl1<p<nandg—1< " (p—1)such thatforalk € 2,uecR"
andF € M™<"

oX,u,F) : F > q|F|°—cy,
|O'(X,U,F)| < C3|F|q_l+C3.

(H3) (structure condition) For alt € 2, u € R™ andF € IM™ " there holds
o(x,u,F) : MF >0

for all matricesM € IM™™ of the formM =1d —a ® a with |a| < 1.
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Remarksl) Assumption (HO) ensures thatx, u(x), U (x)) is measurable of?
for measurable functions : 2 — R™ andU : 2 — IM™*",

2) A typical example for a functions satisfying (H3) iso(x,u,p) =
a(X, u, p)p with a real valued non-negative functien

A serious technical obstacle is that fore (1,2— * ] solutions of the system
(1.1) in general do not belong to the Sobolev sp&¢é!. This fact has led
to the use of renormalized solutions in [LM] and generalized entropy solutions
in [BB] for elliptic equations of the above type (see also [Le]). We will use a
notion of solution where the weak derivatiiai is replaced by the approximate
derivative apDu. Recall that a measurable functians said to be approximately
differentiable aix € 2 if there exists a matri¥, € IM™*" such that for alk > 0

rIiTO rln meas{y € B(X,r): |u(y) — u(x) — Fx(y — x)| > er} =0.

We write apDu(x) = Fx.

Definition 1 A measurable function u 2 — R™ is called a solution of the
system (1.1) if

(i) uis almost everywhere approximately differentiable,
(i) noue WL2; R™) for all n € CI(R™ R™),

(i) o(-,u,apDu) € L1(£2;IM™<"),

(iv) the equation

—div o(x, u(x),apDu(x)) = i
holds in the sense of distributions.

Moreover we say that u satisfies the boundary condition (12p il € Wol’l((z)
for all n € CYR™, R™ N L>(R™, R™) that satisfyn = id on B(0,r) for some
r > 0and|Dn(y)| < C(1+]y|)~! for some constant G< .

Remarksl) The conditions in Definition 1 (except (ii)) are the weakest possible
in order to define the equation (1.1) in the sense of distributions. Note thas if
approximately differentiable, then &u is measurable and hene€-, u, ap Du)

is measurable.

2) The assumptionou € W1(£2; R™) ensures minimal regularity af. For
example, ifu = 0 ando(x, u, p) = o(p) with o(0) = 0, then piecewise constant
functionsu satisfy apDu = 0 almost everywhere but are not admissible solutions.

3) Note that the class of functiomgpermitted in the definition of the boundary
values includes smooth functions of the fony) = a(ly|) |§\ with lim;_ o, a(t) #

0.

The following theorem is the main result in this paper (see the end of this

introduction for the definition of the weak Lebesgue sphte).

Theorem 2 Let 2 be a bounded, open set and suppose that the hypotheses (HO)—
(H3) hold. Assume in addition that one of the following conditions is satisfied:

() F — o(x,u,F)is a C! function.
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(i) There exists a function W2 x R™ x M™" — R such thato(x,u,F) =
¥ (x,u,F) and F— W(x,u,F) is convex and €.

(iii) o is strictly monotone, i.eg is monotone ando(x,u,F) — o(x,u,G)) :
(F — G) =0implies F=G.

Let u denote anR™-valued Radon measure of? with finite mass. Then the
system (1.1), (1.2) has a solution u in the sense of Definition 1 which satisfies the
weak Lebesgue space estimate

(1.3) [Ull{s* oo 2y + AP DUl () < C(C1, C2, || 1| 2, Me@SL2).
Here .- n ( y

“n-1P
and

X n _
= IO(|0 1)
is the Sobolev exponent of s. f & 0 the right hand side of (1.3) reduces to
1
Clen)llull® -

Remarks1) If p > n one can replace the* ->°-norm ofu in (1.3) by theC%#-
norm withg =1 — ; Forp =q=nitis an open question wheth@®u € L™,
See Section 7 for the (weaker) inclusiare BMOyc.
2) The exponents in (1.3) are optimal as can be seen from the nonlinear
Green’s functionGy(x) = c|x|~"/$" for the p-Laplace equation

—div(|Du|P~2Du) = &

in R", n > 3. In particularL>>° cannot be replaced by?.
3) The pointwise monotonicity condition can be replaced by a weaker inte-
grated version, called quasimonotonicity, see Definition 3 and Corollary 4 below.
The key point in the proof of the theorem, which we give in Section 6, is the
“div-curl inequality” in Lemma 11 for the Young measufe, }xc» generated by
a sequenc®uy of gradients of approximate solutions. Together with the identity

1.4) apDu(x) = (i, 1d )

the div-curl inequality implies easily that(-, uc, Duy) converges weakly it

to o(-,u,ap Du) (see Lemmata 12 and 13 for details). The identity (1.4) is a
consequence of general properties of Young measuges-i — ﬁ since in this
caseDu is bounded inL® for somes > 1. If 1l <p <2-— rl] one only has the
weaker bounds

/ [Dug |Pdx < C(a)
luk| <o

but this still suffices to derive (1.4) (see Lemma 9). The main point here, as
well as in the proof of the div-curl inequality, is that while &u may not be
bounded inL! it still behaves at almost every point as ghfunction (and even
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as aC? function up to a set of density zero). Young measures achieve a sufficient
localization to exploit that fact.

We will also use a weaker, integrated version of the pointwise definition of
monotonicity (H1) which we call quasimonotonicity. The definition is phrased
in terms of gradient Young measures (see Section 2 for further details). Note,
however, that although quasimonotonicity is “monotonicity in integrated form”,
the gradienD 7 of a quasiconvex function is not necessarily quasimonotone.

Definition 3 A functionn: IM™" — IM™*" is said to be strictly p-quasimono-
tone if

| ) =000 = 0= D) > 0

for all homogeneous WP-gradient Young measureswith centre of mass\ =
(v, 1d) which are not a single Dirac mass.

A simple example is the following: Assume thasatisfies the growth condition
n(F)| < C |FPP~

with p > 1 and the structure condition
[ +99) ~n(E) : Todxz ¢ [ VP
Q Q

for all ¢ € C§°(£2) and allF € M™*". Theny is strictly p-quasimonotone. This
follows easily from the definition if one uses that for ev&W-P-gradient Young
measurev there exists a sequend®wv} generatingr for which {|Dw|P} is
equiintegrable (see [FMP], [KP]).

As a consequence of our results we state the following corollary:

Corollary 4 Assume that the hypotheses (HO0), (H2), (H3) are satisfied and that
o is strictly p-quasimonotone. Letbe anR™-valued Radon measure g with

finite mass. Then the system (1.1), (1.2) has a solution in the sense of Definition 1
and the a priori estimate (1.3) holds.

Our results generalize recent results in [FR] and [DHM] for fhkeaplace
system. The main improvements with respect to existing results are the relatively
weak assumptions in Theorem 2 and Corollary 4. In particular it suffices to
assume monotonicity or the weakprquasimonotonicity condition instead of
strict monotonicity. Moreover different coercivity and growth rates are allowed
and the case < 2 — rll is included. For another approach to such questions
see [DMM1] and [DMM2].

There exists an extensive literature on elliptic and parabolic equations with
measure valued right hand side see, e.g., [BB], [BG], [BM], [LM], [Mu1l], [MuZ2],
[Mu3], [Ra] and the literature cited therein. Compactness questions have been
discussed in [Fr], [La], [Zh]. Partial results concerning uniqueness of solutions
can be found in [BB], [DA], [KX], [LM].
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We end this introduction by recalling the definition of the weak Lebesgue
spaced $>°. A measurable functioh : £2 — R' belongs td.%°°(£2) if ||f [[{s. :=
sug>ot1/sf*(t) < oo wheref*(t) := infly > 0 : X(y) < t} is the non-
increasing rearrangement 6fand A (y) = £ "{|f| > y} is the distribution
function of f. The expressioff || IS only a quasinorm, but fos > 1 it is
equivalent to the usual norm &f>°. For more information about topological
properties of the Lorentz spack$’ (in particular for 0< s < 1) see [Hu].

2 A brief review of Young measures

In this section we briefly summarize basic facts concerning Young measures.
We follow the formulation given by Ball (see [Bl] and references therein). The
fundamental theorem about Young measures may be stated as follows:

Theorem 5 (Young, Tartar, Ball) Let {2 ¢ R" be Lebesgue measurable (not
necessarily bounded) ang:z? — R™, j = 1,2,..., be a sequence of Lebesgue
measurable functions. Then there exists a subsequereedza family{vy xecn

of non-negative Radon measuresiRi, such that

() vl := [ dy < 1for almost every x 2
(i) o(z) = ¢ weakly in L=(£2) for all ¢ € CY(R"), whereg(x) = (i, ¢)
(iiiy IfforallR >0

(2.1) LIim supmeas{x € 2NB(O,R) : |z(X)]>L}=0
O keN

then||x|| = 1 for almost every x (2, and for all measurable AT (2 there
holds p(z) — ¢ = (1, ) weakly in L1(A) for continuousy provided the
sequencex(z) is weakly precompact ini(A).

Here, “meas” denotes the Lebesgue measure restrict@daind CY(R™) = {¢ €
COUR™) : lim;|_ [¢(2)] = O}.
Notice, that under hypothesis (2.1) for any measurabte (2,

(2.2) (2 = (x p(x, )  weakly inL(A)

for every Carathodory functionp: A x R™ — R provided the sequence
{p(-, )} is weakly precompact ih'(A) (see [BI]). Moreover, ifZ"(£2) < oo,

(2.3)zx — z in measure<=> the Young measure associatedztois ().
The Young measure associated to the sequence] is
(2.4) 6y(><) X vy

if y« — y in measure and ify is the Young measure associatedzto

A Young measure{iy }xcp; is called WP-gradient Young measure (¥
p < oo) if it is associated to a sequence of gradiefiBuc} such that{uk}
is bounded inWP(£2). It is called homogeneous ify = i for almost every
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X € 0. If {vy}xen is aWbP-gradient Young measure then there exists a function
u € WEP(£2) such thatDu(x) = (1«,1d ) almost everywhere.
The following Fatou-type lemma will be useful in Section 5:

Lemma6 Let F: 2 x R™ x M™" — R be a Caratleodory function and
Uc: 2 — R™ a sequence of measurable functions such that-u u in mea-
sure and such that Qugenerates the Young measue Then

(2.5) Iimigf/QF(x,uk(x),Duk(x))dx2/Q/"\Aman(x,u,)\)dyx()\)dx

provided that the negative part HXx, ux(x), Duk(x)) is equiintegrable.

More general versions of this lemma may be found in [Bd1], [Bd2] and [Vall],
[Val2]. Our assumptions allow the following elementary proof.

Proof.We may assume that the limes inferior on the left-hand side of (2.5) agrees
with the limit and is finite. Consider the Caréttdory functionsFr(x, u, p) =
min{R,F(x,u,p)} for R > 0. For fixedR > 0 the sequenceFg(X, Ux(x),
Duk(x)) }k is equiintegrable. We have

/ Fr(X, U (X), DUy () dx < / F (X, U (x), DU (<)) dx < C < oo
2 (9]
for all k andR > 0. By (2.2) we have that for aR > 0
im / Fra(X, Ui (X), DU (x)) dx = / / Fr(x, U(x), ) dix(3) dx < C,
k—>:>O 0 0N men
and by monotone convergence of the integrandR as co
(2.6) / / F(X,u(x),\)dg(A\)dx < C < oc0.
Q MmXﬂ
On the other hand
/ F (X, Ug(X), Duie(x)) dx — / / F (. UX), A) dig (V) dx =
(9] 2 JIMmxn
- / F (X, Ug(X), DU (x)) dx — / Fr(X, U (x), DUy (x)) dx +
(9] 2
+ / Fr(X, U (x), DUy (X)) dx — / / Fr(x, U(x), A) dix (\) dx +
Q Q Man
+/ / FR(x,u(x),)\)dyx(A)dx—/ / F(x, u(x), ) dis(\) dx
Q |Mm><n Q IMan

= g+ + 10
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Now we have

Ik > 07
Ilxk — 0 for any fixedR > 0 ask — oo,
Il -0 asR — oo, because of (2.6) and monotone convergence,

and the claim follows. O

3 Refined convergence results for K p < 2 — i

We shall see in the next section that solutioRse Wol’p(Q) of the system
—div a(X, ug(x), Duk(x)) = fx

with f, € C°({2) satisfy the a priori estimate

(3.1) / IDug[Pdx < C(a, [[fillL)-
[k | <ar

fp>2- rl] one can deduce (see Lemma 10 below) thak is uniformly

bounded in som&S(£2) with s > 1. Forp < 2 — rl] however,Du, may not be
bounded in_* and hence it is not clear in what seri3e, converges and whether
the (weak) limit ofuy is differentiable in any sense. This difficulty has in fact
led to the restrictiorp > 2 — rf in many previous results.

In this section we show how Young measures can be used to extract from
(3.1) almost the same information as from unifotfestimates of the gradient.
In particular we show that, fop > 1, the estimate (3.1) implies pointwise
almost everywhere convergence of (a subsequenceofyee Lemma 8) and
approximate differentiability of the limit as well as the important identity

apDu(x) = (v, 1d ) almost everywhere if2
(see Lemma 9). In the followind, denotes the truncation function

Tao(y) = min{1, ‘; ly, a>0.

By definition |T,(y)| < « and

I for |y| < «,
DTa(y) =19 .
{|y|('d —y @) foryl>a

Lemma 7 Let u: 2 — R™ be a sequence of measurable functions such that

(3.2) sup | |uk|®dx < oo for some s> 0.
keN J 2

Suppose that for each > 0 the sequence of truncated functions
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{To(u)}ken is precompact in £(12).
Then there exists a measurable function uf@such that for a subsequence
Ug — U in measure.

Proof. Choose a subsequence {af} (not relabeled) which generates a Young
measure{vy }xern. By (3.2) and Theorem 5(iii) the measurgs are probability
measures for almost everye (2 and

Ta(uk) — Va = <VX7T04>

weakly in L}(£2,R™) and in fact strongly sincd,(uy) is precompact in_®.
Consequently there exists a subsequence such that

(3.3) To(U) — vo  almost uniformly,
i.e., To(ug) — v, uniformly up to a set of arbitrary small measure. Let
My ={Xx € 2 : |va(X)| < a}.

Then for eache > 0 andé > 0 there exists a sdf. of measure meaB() < ¢
and an indexo(e, 6) such that

[To(u)| < |va(X)]+6 forallx € M, \ Ec and alll > 1lg.
It follows that
U (X) — vo(x) for almost everyx € M,, \ Ec

(consider firsix € Mg, 5 < o and then the union ove? < «). Sinces > 0 was
arbitrary it follows that

Uy = 0y, TOr almost everyx € M.

In view of the equivalence (2.3) it suffices to show thafl,, has full measure.
Now clearlyM, C Mg for oo < 3 since

Ts(ug) — Tg(ve) = v, almost everywhere iV,

and therefore)g = v, on M. By (3.3) there exists for each> 0 a setE., and
an indexlo(e, ) such that meag() < ¢ and

U | > [Ta(ug)] > 02‘ on (2 \ E.) \ M, for all | > Io.

In view of (3.2) this implies

meas((\ E)\Ma) < .

Letting e — 0 we deduce
meas(2 \ UM,) = lim meas(2\ M,) =0

and the proof is finished. O
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Lemma 8 Let 2 be a domain inR" with £"(£2) < oo and i € Wh1(£2; R™).
Suppose that there exist)p 1 and s> 0 such that

(3.4) sup [Dug|Pdx < C(a) < oo forall a >0
kEN J|u| <o
and
sup [ |ulPdx < C < 0.
keN J 2
Then there exist a subsequengeand a measurable function:u? — R™ such
that

Ug — U in measure.

Moreover u is for almost every & (2 approximately differentiable. For alf €
C§°(R™; R™) there holdsy o u € WLP(£2; R™). If u, € Wy '(£2) thennou
Wy (£2) N WLP(£2) provided thaty = id on B(O, r) for some r> 0.

Remark.If C(a) < C’(«a+1) andp > 1 then the assertion holds for ajl

CY(R™ R™) N L>*(R™; R™) that satisfy|Dn(y)| < C (1 +y|)~L. To see this,
it suffices to verify thatD(n o uk) is bounded inLP(f2). This follows by an
application of (3.4) witho = 2| € IN.

Proof. Choose a subsequence (not relabeled) of the seqyer¢avhich gener-
ates a Young measufexy }xc . Suppose first in addition tha? is such that the
compact Sobolev embeddiyP(£2) — LP(£2) holds. Note that by (3.4)

ID(Ta(uc)Eo(ey < Cl)-

Hence by the compact Sobolev embedding the sequhdéux|)} is precompact
in L' and by Lemma 7 there exists a measurable functiosuch that (after
passage to a subsequence)

U] — w

in measure. It follows that
(3.5) sptvx C Sy ={y € R™ @ |y| = w(x)}.

LetM, = {x € 2: |w(x)| < a} and choose a radially symmetric cut-off function
n € C5°(B(0,3a); R™) such thaty = Id on B(0, 2«). Then by (3.4) and by the
compact Sobolev embeddinguy) is precompact irLP(£2) and thus

n(u) — v in measure.
Hence
(3.6) sptyy € 77 Y(v(x)).

If v(x) # 0 thenn~1(v(x)) is concentrated on the ray througtx) and it follows
from (3.5) and (3.6) thaty is a Dirac mass. Ifu(x) = 0 thenn~Y(v(x)) C
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{0}U(R"\ B(0, 20)). Forx € M,, one deduces from (3.5) and (3.6) that= 6.
Hencevy is a Dirac mass for almost every € M, and thus for almost every
X € {2 sinceU,soM, = 2\ E whereE is a set of measure zero. Therefaie
converges by (2.3) in measure to a measurable function

Now we remove the additional regularity restriction @nLet (% C 2 be a
sequence of Lipschitz domains (choose, e.g., a finite union of ball@fpsuch
that £ " (2 \ %) — 0 ask — co. Application of the previous arguments &
shows thatvy is a Dirac mass for almost evesy € (2. Hencevy is a Dirac
mass for almost every € 2 andux — u in measure, whera(x) := (i, Id ).

To see thatl is approximately differentiable, &, = {x € 2: |u(X)| < a}.
It suffices to show thati is almost everywhere approximately differentiable in
M, for all a > 0. Forn as above we have

n(uk) = n(u) in WHP(2; R™).

In particular,n(u) is almost everywhere approximately differentiable. kete
M, be a point of approximate differentiability ef(u) and of approximate con-
tinuity of u, i.e.,

1
I|m0 rnmeas{x € B(xo,r) : Ju(X) —u(x)| > 6} =0, forallé>D0.
r—

For e > 0 consider the set

E e ={x€B(x,r): [u(x) — u(x) —apD(n o u)(Xo)(x — Xo)| > er}.

Then, by the approximate continuity af
IimlmeasE N {|u(x) — u( )>a)—0
r—orn e {| XO|*2} -
while
lim L meask, . N {|u(x) — u(xg)| < “1 =0
r—0rn e {|ux—uxo|<2}— ’

sinceu andn o u agree on that set anglo u is approximately differentiable at
Xo. Henceu is approximately differentiable ag and apDu = ap D (n o u)(Xo).
O

Lemma 9 Let u be as in Lemma 8 with p>- 1. Then the Young measurg
generated by (a subsequence of)as the following properties:

(a) v« is a probability measure for almost everyexs?.

(b) v« has finite p-th moment for almost everyex(2, i.e., [ymxn [A[Pdix () is
finite for almost every x (2.

(c) vy satisfies

(vx,1d ) =apDu(x) almost everywhere if.

(d) vy is a homogeneous W-gradient Young measure for almost everg x2.
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Proof. Let 7x denote the Young measure generated by (a subsequence of) the
sequence (uc, Duk)}. By Lemma 8 we have

17)( = (Su(x) ® Uy .

Letn € C§°(B(0,2x); R™), n = Id on B(0, ), and letv” be the Young measure
generated by
D (1 o uk) = (Dn)(uk) Du .

Thenvy}! is a probability measure, has finipeth moment and
(0, 1d ) = (D(n o u))(x) = Dn(u(x)) apDu(x) .

It follows for ¢ € CS°(M™*") that

AOou) = 07.9)= [ A,

Rewriting the left hand side we have on the other hand
AONIDW) — [ DN d(p. N
Rm><|Mm><n
= [ OO,

MmX

Hence
(3.7) vl =y if JuX)| < a.

Therefore the properties in (a), (b) and (c) hold for almost ewesy{|u| < a}
since they hold for}]. Taking the union over. > 0 we obtain (a), (b) and (c).
To prove (d) note that

/ D@ o u)[Pdx < sup|Dnl? / IDu[Pdx < sup|DylP C(20).
? |

Uk | <2

By the localization principle in [KP] we conclude that is a homogeneous/-P-
gradient Young measure for almost everye (2. Thus (d) follows from (3.7)
and the fact thatv was arbitrary. O

4 Approximate solutions and a priori bounds
Throughout this section we assume that g in (H2), i.e., that the growth and
coercivity rate ofo coincide. In order to establish existence of a solution of (1.1),

(1.2) we introduce the following approximating problems:

(4.2) —div o (X, uk(x), Duk(x)) = fk(x) in £,
(4.2) u =0 onof.
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For f, we choose the standard mollification

W60 = [ aux =) duty)

where, fork € IN, v (x) = k"yo(kx) with a functiony € C§*(B(0,1)), v > 0,
[7ollLr = 1. Thenfy € C*° N LY NL> for eachk and

fi = i in . Z¢.
Let A: Wol’p((Z) — W~LP'(£2) denote the operator

Al um— (v — /Qo(x,u(x),Du(x)) : Dvdx) .

By (HO) and (H2) this operator is well defined. If we assume for simplicity (see
also the remark below) that only depends orx and Du but not onu then,
by (H1), the operator is monotone, i.e.,

(A(U) — A(v),u —v) >0 for all u,v € W,"P(£2)

where(-, -) denotes the dual pairing Mlol’p andW %P’ The coercivity hypoth-
esis in (H2) implies tha# is coercive, i.e.(A(U),u) > c(||ullwzes)||ullwe fOr

a real valued functiore with lim;_ ., c(t) = co. On the other hand the growth
condition in (H2) (withg = p) implies thatA is hemicontinuous, i.e., the mapping
t — (A(u+twv), w) is continuous on the real axis fat v, w € Wol’p(ﬁ). Then by

a standard theorem for monotone operators (see, e.g., [Va]) it followdAtisat
surjective and hence that (4.1), (4.2) has a solutips Wol’p(Q) for all k € IN.

Remark.If o depends explicitly o or if o is merely strictlyp-quasimonotone
rather than monotone it is slightly more difficult to show existence of solutions
of (4.1), (4.2). However, using Borsuk’s theorem one can solve (4.1), (4.2) ap-
proximately in finite dimensional subspaceswgl’p(ﬂ) and then pass to the
limit by a suitable adaptation of Lemma 13 below.

As in [DHM], one easily derives a priori estimates for the solutiop®f the
approximating problems.

Lemma 10 Let 2 ¢ R" be an open set, &£ L}(£2; R™). Assume that satisfies
(H2) and (H3) with p=q and that ue Wol’p(fz; R™) is a solution of

(4.3) —div (X, u(x), Du(x)) = f
in the sense of distributions. Then
u € LS=2;RM),
Du € L®°(2;IM™")

where
n «_ Nhs _ n _
s=,_ (-1, S_n—s_n—pm 1)
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and

(4.4) IDU[{s.c + [Jul

[sr00 < C(Cy, Co, || || L2, meass?).

If c2 = 0 the right hand side in (4.4) reduces to(&)|f || "

Proof. We use similar techniques as Talenti [Ta] in connection with quasilinear
elliptic equations and also aséBilan et al. [BB, Lemma 4.1] for solutions of
the p-Laplace equation. As above define the truncation funcligrby T, (y) =

min(Z, ho;l)y' By definition |T,(y)| < a and

Id for ly| < «,

DTa(y) =1 .
{|y|('d — 1 ®p) forlyl>a

Testing (4.3) withT,(u) and observing (H2) and (H3), we obtain
(4.5) [ IDUPdx < alf oy + cameas().
ul<c

Using the fact thatDu| > |D|ul| and definingu, = min(Ju|, o), we obtain from
the Sobolev embedding theorem that

c/ |ua\p*dx < (a|f |y +comeas(2))P /P.
2

Hence we may estimate the distribution functibp, of |u| by

Au(@) < a—P*/ Ua|P" dx
2
< cmax~*|[f [P,/ . (comeas2)P PaP")
and trivially

Auj(@) < meas(?.
The combination of these two estimates implies

1 1
(4.6) Jull{s.ee <C max(|f]|s", ) (meas()?).

From (4.5) and (4.6) one deduces that the distribution functigp satisfies for
alla >0

1
Noul® = [ IDuPdxe A @)
Jul<a
C
< ﬁp(allfllu+02measf2)+
+cmax@ S ||f |P./P , (comeas2)P /PaP").

Li(£2) *

Choosinga = 52:2 and observing thadp, < meass? we deduce (4.4). Re-
peating the proof wittt, = 0 we easily establish the form of the constant in that
particular case. O
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5 A div-curl inequality

The result of this section is the key ingredient for the proof that one can pass to the
limit in the equation (4.1) for the solutionsi }xen Of approximating problems.
Since it is independent of the differential equation we state it in a more general
form using only the hypotheses (5.1)—(5.7) below. Using Lemmata 8 and 10 it
is easily verified that they hold under the assumptions in Section 4.

(5.1) 0: 2 x R™ x M™" — IM™" is a Caratlodory function.

(5.2) o(x,u,F) : MF > 0 holds for all matricesM =Id —b®b € M™™
with |b] < 1.

(5.3) uxc € WH(2; R™) and there exists aa > 0 such that/, [Duy[sdx < C
uniformly in k.

(5.4) The sequencex(X) = o(X, uk(x), Duk(x)) is equiintegrable.

(5.5) The sequenaa converges in measure to some functigrandu is almost
everywhere approximately differentiable.

(5.6) The sequenck := —div oy is bounded in_1(£2).

(5.7) Dy € LI, andoy € L, for somer, 1 < r < co.

Remark. Assumption (5.2) coincides with condition (A5) in [La] #f(x,u,F) :
F > 0. This condition could be relaxed io(x,u,p) : Mp > —C|p|? if the
sequenceDuy|? is equiintegrable.

We may assume (after passing to a suitable subsequence if necessary) that
{Duw} generates a Young measuwrelt follows from Theorem 5(iii) and (5.3)
that v is a probability measure for almost everye (2.

Lemma 11 Suppose (5.1)—(5.7). Then (after passage to a subsequence) the se-
quenceosy converges weakly ini(f2) and the weak limit is given byo(x) =
(vx, o (X, u(x), -)). Moreover the following inequality holds:

/ a(x,u(x),\) : Adg(N) < o(x) : apDu(x) fora.e.xe £.
MmxD

Remarksl1) The assertion of Lemma 11 follows (with equality) directly from
the div-curl lemma (see [Mul], [Tar]) if = 0, if {ux} is bounded iNWP(£2)
and if {0y} is bounded in_P'(£2) with 1 < p < .

2) If the sequencgDu} is equiintegrable then, by Theorem 5(iiDu(x) =
apDu(x) = (v, Id ) almost everywhere.

Proof. Choose a non-negative function € C>°([ 0, 00))NL*>°([ 0, c0)) such that
a1 =1d on [0Q,6) for somes > 0, oj > 0 and

(5.8) aj(s)s < ay(s) fors>0.
One possible choice ig;(s) =s for 0 < s < ¢ and

*£(6)

0s(s) = 5 exp( /5 :

d¢) fors> ¢



Elliptic systems with measure-valued right hand side 559

where theC >°-functione € L([ 6, c0); [0, 1]) satisfiesz(§) = 1 and=™(6) = 0
for all n > 1. Then let

(5.9) ¥1(2) = aa(|z]) ‘; forz e R™,

and choosep; € C§°(2;R) with o1 > 0 and [, p1dx = 1. The idea is to
multiply the equation in (5.6) by 11 o (Ux — v) wherev € CY(£2; R™) is a
suitable comparison function and to uge to localize the resulting equation

610) [ o Dlervalt— o)ix= [ feprvauc - vidx
2 J
in X. We first estimate the left hand side in (5.10). Let

he = ok D(p191(u —v))
= ok Y1l —v) @ D1 tok @ Do (U —v)D(u — v) 1

and let{uyx }xen, be the Young measure generated by the sequénceDuy}.
Then, by (5.5) and (2.4),

Hx = Oy(x) ®
and thus by (5.4) and (2.2)
o — o weakly inL(£2)
with

(5.11) 5(x) = /R i) = /M .U, V().

Note that
Dyi(z) = (Id —0®0) C”'(Z'Z') +0® 0a5(z])
aa(|z]) a(/z|)|1z]
= Id —(1—- 0®0),
2 (4O gz 0
wheref = él' By (5.2) and (5.8) we have
(5.12) o(X,ug,Duy) : Dy o(uk —v)Dug >0

and therefore we conclude that the sequehgk(is equiintegrable. By Lemma 6
and (5.5) we deduce

(5.13) liminf [ hgdx 2/ o Y1(u—v) @ Dy dx
k—co Jp 2

+/Q<p1 /Imen a(X,u(x),A) : D1 o (Uu—v)(A— Du(X))d(N)dx.
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To obtain the first term on the right hand side we used the fact that for two
sequence$; and gx with fy — f weakly inL", r > 1, andgx — ¢ boundedly
almost everywhere, the produfitgx converges weakly td g in L" which is
easily verified using Egoroff's theorem and the Lebesgue dominated convergence
theorem. To estimate the right hand side in (5.10) note that by (5.6) (after passage
to a subsequence if necessary)

if| = & in . 2(0)

and thus

(5.14) limsup| [ hgdx]
Q

k—oo

limsup| [ fc¢1(uk — v) p1dx|
o

k— o0

IN

supla| (s, 1) -
RM

Let X be a point of approximate differentiability af and a Lebesgue point of
the measure, and the functionr, i.e.,

(5.15) lim sup

r—0

9

BOo.) _
rn

(5.16) limsup |o(x) — o(X)| dx = O.
r—0 B(xo,r)
In addition we may assume thag is a Lebesgue point of the functiorg;%,"m

defined in (5.20) below. In order to localize the equationxinve define the
rescaled cut-off functions

X0

P00 =1 ("),

wherey; € Cg°(B(0,1); R) is non-negative with/,, ¢1 = 1, and

Qr (X)X
X

Pr(x) =

: X
with a, (X) =T a1(|r|) )
Then inequality (5.12) holds foy,, r > 0, since (5.8) is invariant under this
scaling. Finally let
1
z= (X — Xo)

denote the scaled coordinates aroupdnd let

{i () rl(u(x) — v(X)),
or(z) = o(x).

Then (5.11), (5.13) and (5.14) yield
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(5.A7LHS (f) := / e () / o0, U0, A) : (Der (U — )N (Nl
0 Mmxn
< r sup|ya| super 1" (B (%o, 1))
- / 5% +12) : 1@ (2)) © Dpa(2) dz
B(0,1)

+/ 01(2) 5% +12) 1 D (li (2))D(rz + %) dz =: RHS ).
B(0,1)

Choosing the functiom as the first order Taylor approximation ofin X, i.e.,
v(X) = U(xo) +apDu(Xo)(X — Xo)
we obtain by the approximate differentiability afand (5.16) that for — 0
- — 0 in measure irB(0, 1),
Gr — ax) in LY(B(0, 1)),
and hence (at least for a subsequence)
Y100 — 0  boundedly almost everywhere,
(5.18) D#yj0l — Id boundedly almost everywhere.
Thus we conclude
(5.19) RHS () — o(X) : apDu(xg) asr — 0.

(and in fact the whole sequence— 0 converges as the approximate differential
is independent of the sequence).

The passage to the limit — 0 on the left hand side of (5.17) is slightly
more difficult since the functiongym defined by

)= [y 0.060. el ()

are in general not i(£2). The remedy here is to define the truncated functions

A

(5.20) glt, () = Aﬂ (3 (6,000 MAmdis() for M =12,

wheren € Cz°(B(0,1);[0,1]) denotes a fixed function satisfying = 1 on
B(0, ;). Note that for every fixedl the sequence;; (X, Uk (X), Dui(X))(Duk (X))im

xn(|D”,5|(x)‘) is equiintegrable (sincey is equiintegrable) and therefore its weak
L*-limit is given by glt,. By (5.2) we have

o(x,u(x), A) : Dp(ux) —v(x)A = 0

and thus the left hand side in (5.17) is estimated by
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LHS (1) /Q e ()i 0D v )i (U — v)(x)dlx

(5.21) > /Q e (0l (D) (U — v)(x)elx

where we take the sum over all repeated indices. dy&t,(z) = giym(x) and
gﬁlﬂmy,(z) = gi’}l"m (x) denote the rescaled functions as above. Sigogas chosen
to be a Lebesgue point @f}f‘m we have

(5.22) Gl + (@) = ghim (%) in LY(B(0, 1)) for r — 0.
Using (5.21), (5.22), (5.18) and (5.19) we therefore obtain

/Wxnn(b)a(xO,U(m),A) DA du () = g (%)
7(X0) : apDu(xo)

AN

for all M € IN. Choosingb = 0 in (5.2) we infero(xg, u(Xp), A) : A > 0 and
Lemma 11 follows by the monotone convergence theorem. O

6 Compactness and existence of solutions

In this section we use the div-curl inequality in Lemma 11 to show that the
approximate solutionsg constructed in Section 4 converge to a solutioof the
equation (1.1). The key point here is to identify the weak linit o(-, u, apDu)

of the sequencey = o(-, Uk, Duk) and to prove the identity

(6.1) apDu(x) = (i, 1d )  for almost everyx € (2,

wherev is the gradient Young measure generated by the seqUénge kcn.
We first need the additional assumption (6.1). This will be later removed by
Lemma 9 and the a priori estimates of Section 4.

Lemma 12 Suppose that the sequenfe }ken Satisfies the hypotheses (5.1)—
(5.7) and that the Young measw@enerated by the sequenfBuy }ken satisfies
the identity (6.1). Assume that one of the following structure conditions holds:

() o ismonotone and the mappingH o (X, u, F) is continuously differentiable
for all (x,u) € 2 x R™,

(i) o(x,u,p)= %VF\J/ (x,u,p) and p— W(x, u, p) is a convex G-function for all
(x,u) € 2 x R™.

(i) p — o(x,u,p) is strictly monotone for al(x,u) € 2 x R™,

Theno(x) = o(x, u(x), ap Du(x)). If (ii) or (iii) holds then
o (X, uc(x), Dug (X)) — o(x,u(x),apDu(x)) strongly in L}(£2).

In case (iii) it follows in addition that Dy — ap Du in measure.
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Proof.We suppress throughout the proof the dependenceardu, i.e., we write
o(A) = o(x,u(x),A) andv = 1. Fix x € {2 such that (6.1) and the conclusion
of Lemma 11 hold and lek = (v, Id ) = apDu(x). We may assume by an affine
transformation that = 0 ando()\) = 0. Then by Lemma 11

/ a(N) : Adv()) <0.
Mm><n

By the monotonicity ofc we have

oN):A>0
whence
(6.2) o(A) : A=0 on sptv
and thus
(6.3) spty C {\ | o(N) : A =0}.

Case 1:Suppose that (i) holds. We claim that in this case the following identity
holds on spt:

o(A) i u=—(DoO)u) : A
Indeed, by the monotonicity of we have for allt € R
(e(A) —o(tp) : (A —tp) = 0,

whence

oN) A —a(N) 1 (tw) = o(tp) A —o(ty): (tp)
= (Da(0)) : (t)) +oft).

The claim follows from this inequality using (6.3) since the sigri & arbitrary.
Thus

o

/ #(N)dv(\) = —(Da(0) / Adv())
Sptz/ Sptu

—(Do(0)A =0 =0(\).

Case 2:Suppose that (ii) holds. We may assume in addition w@) =0. We
first show that the support of is contained in the set whel& agrees with the
supporting hyper-plan&/(\) + c(A\) (A — A) =0 in A:

sptv Cc K ={x € M™" : W()) = 0}.

If A € sptr then by (6.3)0()) : A =0 and it follows from the monotonicity
of o thato(tA) : A =0 for allt € [0,1]. HenceW(}\) = fol o(tA)Adt = 0 as
claimed.
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By the convexity ofW we haveW (p) > 0 for allp € M™" and thusL. =0
is a supporting hyper-plane for all € K. Since the mapping — W(p) is by
assumption continuously differentiable we obtain

(6.4) o(\)=0=c(\) forall A\ €K > spty

and thus

(6.5) e / c(\) dv(\) = o()).
Man

Now consider the Caraffodory function
g(x,u,p) = [o(X,u,p) — a(x)|.
The sequencek(x) = g(X, ux(x), Duk(x)) is by (5.4) equiintegrable and thus
g« — g weakly inL(£2)

and the weak limity is given by

00 = [ Joln) = 700l dag(n) @ dix()

/ loe(x,u(x), ) — a(x)|dx(A) =0
sptv

by (6.4) and (6.5). Sincex > 0 it follows that
gk — 0 strongly inL(12)

and the proof of the second case is finished.
Case 3:Suppose that (iii) holds. In this case (6.2) implies by the strict mono-
tonicity of o that

v =65 = dappu(x)-

Thus Dug converges in measure to dpu and the result follows by Vitali’'s
convergence theorem using the equiintegrability (5.4 of O

Lemma 13 Suppose that the sequenfe }ken Satisfies the hypotheses (5.1)—
(5.7) and the inequality

/ [Dug |Pdx < C(a).
[u| <

Assume in addition that the Young measugenerated by the sequenfd@uy }«en

is a WLP gradient Young measure and thassatisfies the identity (6.1). Assume
finally thato(x, u, -) is strictly p-quasimonotone for almost every=x(2 and all

u € R™. Theno(x) = o(x, u(x),apDu(x)), Dux — apDu in measure and

o (X, u(X), Dug(x)) — o (X, u(x),apDu(x)) strongly in L}(£2).
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Proof. Since vy is for almost everyx € {2 a homogeneous gradient Young
measure (see Lemma 9) we deduce from the definition of the ptfaasimono-
tonicity of o that

/ o (%, U(), DA ix () = / o(x, U(X), \)drx()
Man n

|Mm><

(6.6) x /M _Adux(d) = 5(x)ap Du(x).

On the other hand Lemma 11 implies that in fact equality holds in (6.6) and
thus by (6.1)x = éappu(x). The result follows now as in Case 3 in the proof of
Lemma 12. O
Proof of Theorem 2 and Corollary 4\Ve give the proof first for the case that
o has the same growth and coercivity rate, iges q. The general result follows
from this case using an approximation @f
Case 1: p=q. The solutionay of the approximate problems (4.1)

(6.7) — div o (X, Ux(X), Dug (X)) = fx(x) in 2
satisfy the a priori bounds (4.4)
[[DU[s.00 + [[Ukl[{s o < C(C1, C2, [IficlLa, meass?).

with s; s* > 0 as well as the estimate (4.5)
/ |Dug|Pdx < C().
Jul<a

In view of the embedding®> — L® for 0 < a < (3 the assumptions of Lemma

8 and Lemma 9 are satisfied. Thus there exists a measurable functiGh—

R™ such that (for a subsequenag) — u in measure andvy, Id ) = ap Du(x)

for almost everyx € {2 wherev denotes the Young measure generated by the
sequencgDu}. It follows from (HO), (H2) and (H3) that the hypothesis (5.1)—
(5.7) in the div-curl inequality (Lemma 11) are fulfilled and by Lemma 12 and
Lemma 13 we deduce the weak convergence(afuy, Dui) to o(-,u,apDu) in

L!. Thus we can pass to the limit in (6.7) and obtain

—div o(-,u,apDu) =f  in Z'(2),

i.e.,u is a solution of the equation in the sense of Definition 1. Note thatif
2— ﬁ then the sequencgDui} is equiintegrable and consequently Bp(x) =
Du(x) = (1, Id ) for almost everi € (2, i.e.,u is a solution of the equation and
ap Du agrees with the usual weak derivativelwoflt remains to prove the a priori
estimate (1.3) fou. Choose a cut-off function € C3(B(0, 2«)) such that) = Id
on B(0,a) and|Dn| < C whereC is independent of. Sincen(ux) — n(u) in
WP and apD(n o u) = apDu on {|u| < a} (see the proof of Lemma 8) we
deduce
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/ [D(nou)Pdx < Iiminf/ [Dn|P|IDuk|Pdx < C(a)
2 k=00 Jiu|<2a
and thus
/ lapDulPdx < C(a).
Jul<a
The estimate fou in the weak Lebesgue spaces follows now as in Section 4.

Case 2:The general case—1 < q—1< ",(p—1). The idea is to consider
the regularized problems

(6.8) —div o (X, Uz(X), Duc(x)) = 1t in (2,
(6.9) u- =0 onof?
with

o(X,u,F) :=o(x,u,F) +¢|F[52F

for somes > n+1 ande < % Theno, satisfies (HO)—(H3) with coercivity and
growth rate both equal ts, i.e.,

o:(X,u,F) : F
|JE(X7 u, F)|

elF P,

>
< |F|Sil+k(c3asaq)‘

Using the results in Case 1 we find a solution € Wol’s(()) of (6.8), (6.9).
Testing (6.8) withu, yields

6/ DU [Pdx < (Ue, ) < [|Uc||Loe ey ll ]z -
2
Using Sobolev’'s embedding theorem

[[Ue[|Loe(2) < C [DU||Ls(e2)

we conclude

[Duc|[sy < (C”‘Z”'//‘)sfl,
[Uellioe ) < C(C”";H-//&)Sll
and
(6.10) HnguEls_l”Lsil(Q) < Clulls.

By testing equation (6.8) witfi,(u.) we obtain, as in Lemma 10, that

DUl n - (2) < C

Lty

for a constanC which does not depend an Thus, in combination with (6.10),
we have that for alp < _°;
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lim & [DU. [~ |Lo(e = 0
and hence in particular
(6.11) llo<(X, Ue, DUe) — oo(X, U, DU.) || 1) — O ase — 0.
Thus the wealt 1-limit oo of the sequencey(-, u., Du.) satisfies the equation
—div oo = p in Z'(02).
If we test (6.8) withy o (U. — v) ¢ (¢ andy as in Section 5) we obtain

suply| (|ul, @) =
Q

/ (0=(x,u:, Du.) : (D9)(u: — v)Du.y
Q—og(x,ug, Du.) : (D¢)(u: — v)Duy
+0(X, Uz, DU.) 1 (U —v) @ D) dx.
By definition
o:(X, Uz, Du.) : (D9Y)(U: — v)Du. > oo(X, Uz, DU.) @ (D9)(Ue — v)Duy
and thus (6.11) implies

suply| (|ul @) >
f?)

lim sup (UO(Xa U., Du.) @ (D¢)(ue — v)Du.gp
0

e—0

_JO(X7 Ue, Dus) . (D’L/})(ue - U)D”U(,D
+oo(X, Uz, DU:) T (U —v) ® DSO) dx.

Sinceq—1< ", (p—1), the sequencey(x, u., Du.) is equiintegrable in(92)
and the arguments in Section 5 apply. |

7 The critical casep = n

In this section we prove that solutions of the elliptic system (1.1) are bounded
in BMOyc(£2) for p =g = n. Our proof is strongly inspired by Simon’s beautiful
proof of C%¢ estimates for the Poisson equation by scaling and compactness
(see [Sil]). Here we say that € BMQqc(f2) if u € L (£2) and for all open

U CcC 2 there exists a constaft(U) such that

1

[0 Bwow, o = sup_sup o [ Ju6) — ueldx < C(U),
yeu Q(y,Rc? QWY,R)

where uy g denotes the mean value af on the cubeQ(y,R). In Lemma 14

we first show a localized version of the a priori bound (4.5) for solutions

Wol*“((z; R™) of the approximating system
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(7.0 —div o(x,u(x), Du(x)) =f
with f € L(£2; R™). Since such a result does not seem to holddfar n we

restrict ourselves to the cage= n = p in this section.

Lemma 14 Let u € WH"(£2; R™) be a solution of system (7.1) with &
L1(£2; R™M). Then there exist constants,GC; such that the inequality

/ [Du|"dx
u-38l<a
NQ(y,R/2)

C
(7.2) <
R™ Jowy.R\Qw.R/2)

holds for all cubes Qy,R) C 2 and all 3 € R™.

Proof. Let n € C§°(£2) be a cut-off function such thaj = 1 on Q(y,R/2),
0 <n < 1and|Dn| < C/R. Choose a smooth functice, : R — R with the
following propertiesia,, = 1d on [0,«], 0 < a, < nea, @), <1 and

lu — B]"dx + Co(a[f [|L2() + R")

n/(n—1)
(73) O<c (%és)) <al(s) < aas(s) on (0, 0).

A possible choice is

S for s < a,

= S n/(n—1)
2a(s) {a+/ (?) dt fors> a.

Define the cut-off functionp,, in the target by

_au(|z))
QO(X(Z)_ |Z| Z.
Then
D(pq o) = 2V (ld— ' ”)Dv+a;(|v|)(” ® ”)Dv,
|v] v~ Jvl lv| ~ ||

and by (7.3), (H2) and (H3)
a(Dv) : D(pq 0 v) > o(Dv) : Dval (Ju]) > a/(ci|Dv|" — ¢y).
Testing the equation (7.1) with" o, o (U — /3) we obtain
| 1) : Dl o (1= Ml =
= —/ nn""1o(Du) : g4 0 (U — ) @ Dndx+/ n"f vq o (U — B)dX.
(] (]

It follows by (H2) with p = g = n and by using Blder’s inequality and (7.3) on
the right hand side that
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/ 7" IDulal,(Ju — £y dx
(9]

C

(n—1)/n
< (/ n”<c3|Du+cz)”a;<|uﬁ|)dx) ‘
R \Jay.r

1/n
x </ u—ﬁ”dx) +Callf ||y + CR.
Q(y,RN\Q(Y,R/2)

Application of Young’s inequality yields

Co /

R" Jay.rQu.r/2)
+Cy(allf [y + R"),

[ raiqu - shpupax < u— o
[0}

and inequality (7.2) follows from the definition @, . O

The following lemma shows that a function satisfying an inequality like (7.2)
is a function of locally bounded mean oscillation.

Lemma 15 Let 2 ¢ R" be open, uc Wi"(£2; R™) and suppose that the esti-
mate

(7.4) |Du|"dx < Cﬁ
‘FL:Q? ﬁ|‘q/<2)a R Jaw.r\Qw.R/2)
Y,

holds for all cubes @y, R) C 2 and all 3 € R™. Then uc BMOQ(f2) and

lu— 3]"dx + Cy(a +R")

[ulemow,o) < Co (1 +]ullLney),
where G depends only on§ Cy, and U.

Proof. It suffices to show thafjul|n) < 1 implies u]smou,2) < C». Indeed,
if ||ullney > 1, observe thati 7= 1+I\Uﬂw<o> satisfies (7.4) and that the estimate
[G]emo,2) < C, implies the assertion. Now suppose for a contradiction that
there is a sequencex such that||ug||n) < 1 and pk]emow,) — oo for
k — oo. Thus there exisx, € U andry > 0 such thaiQ(x, rx) C 2 and

1 1

n / Uk — (Ui ri | OX > o[ Uk lemow ,2)-

e JQr)
We deduce thaty — 0 since|/ug||n2) < 1. Define the rescaled functions
v = rlk(—xk+(2) — R™ by

Uk (% +1kZ) — (Uk)xr,
[ uk Iemo ,2)

and letUyx = * (= +U). Thenv, € BMOioc(¢%), [ vk Jamowy. 2 = 1,

/ vk dXx = 0,
Q(0,1)

vk(Z) =
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and

1
/ lok — (vk)o,a|" dx > 5
Q(0,1)

Using (7.4) we obtain the following inequality for the rescaled functions

Co Ci(a + (rkR)"
/ Dok < o — pnax+ S TKR)
Jjog = Bl < @ QWY,R\QW.R/2) [ U« ]emow o)

NQ(y,R/2)

for all Q(y,R) C % and all3 € R™. We claim that the sequendex} is
bounded inw>* for all s < n. To see this, fixR > 0 and choosé, big enough
such thatQ(0, 2Ry) C (2 for all k > ko. Choosingy = 0 and3 = (vk)o,2r, W€
obtain from the inequality above

, Cila+ (RO

/ IDu|"dx < C[ vk Jgmouy, 20 n—1 '
5 ndnang | < [ U Iemow .0

Since

[(v)o,2r,| = |(Uk)o,2R, — (Uk)o,1| < C(]INRo| + 1)[ vk Iamouy,2) < C(|INRo| + 1)
we deduce withy(t) = C(]Int| + 1)

Ca(a + (rkRo)")

/ Duydx < € + 1 KRV
log| < a —~(Ro) [Uk]BMO(U,Q)
NQ(0; Ry)

This implies

/ IDul"dx < C +Cla+ (cRy)")  for a > 24(Ro)
Jog| < /2
06(07 Ro)

and the idea is to use the methods in Section 4 to bawndnd Dvy in the
weak Lebesgue spacé$ > and LP> for all p < n. Define the truncation
function T,, as in Section 4 byl (y) = min{1, \3I +y. From |(vk)o.r,| < C(Ro)
and [vk ]emo(uy,20 < 1 we deduce

/ | To (k)| "dx / vk |"dx
Q(0,Ro) Q(0,Ro)

c/' hmfmm&PW+c/‘ (or I"dx
Q(0,Ro) Q(0,Ry)

CR} + C(R)R] |

IN

IN

IN

and
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/ ID(Ta(u)|"dx < / |Dwk|"dx
Q(0,Ro) log| <
NQ(0, Ry)

oo
Q(0; Ro)

< / |DUk|ndX
k| < «
NQ(0, Ry)

+C
IZ; 2in o] < 2*1a
NQ(0, Ry)
< C+Cla+ (R

Sobolev's embedding theorem yields for plk n

/ lui [P dx
k| < «

NQ(0, Ro)

IA

IN

C(R)(aP /" +1).

+ D (T, (v))|"dx
;/Mlvkdﬂa D(Ta(w)

|ka‘ndX

p*/p
( / Ta@P + |D(Ta(vk»|p>
Q(0,Ro)

Using the same arguments as in Section 4 we obtain f& 4lln

llokllws@,r) < C(Ro,S).

In particular there exists a subsequence (not relabeled) such that

v — v in L (R for all g < oo

and

(7.5) / vdx = 0.
Q(0,1)

571

Choose a cut-off functiop, € C5°(B(0, 2¢)) such thatp, = Id on B(0, o) and

IDpq| < C where the constart is independent ofv. Theny,, o (vx — 3) is
bounded inV\/,(l;c”(IR“) and converges t@, o (v — 3) in L

(R™) for all p < oo

while D (¢, o (vk — 3)) converges weakly i (R") to D (¢, © (v — 3)). By the

lower semicontinuity of th&."-norm we obtain
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/ |Dv|“dx§/ ID(¢a o (v — B))["dx
lv—8] < o Q(y,Ro/2)

NQ(Y, Ry/2)
< liminf ID (¢ © (v — B))|"dx
k=o0 JQ(y,Ro/2)
< Climinf Dk |"dx
k—o0 v — B] < 2
NQ(y, Ro/2)
- 1 C Ci(a + (rkRy)"
< CGliminf { i / e — B|"dx + 1(an_l( kRo) )}
k=o' | RS Joy,rRonQ(y.Ro/2) [ U Iemow o)
— 1
=CG lv — B|"dx.

RS Jay.r\Qy.R/2)
Using the monotone convergence theorem we may pass to thedimitoo and
get

(7.6) / [Dv|"dx < CCoRln [v — B|"dx.

JQ(y,R/2) JQY,R\Q(Y,R/2)
If we chooses = (v)y,r then the right hand side in this inequality is estimated by
[v]emo < 1 since theBMO-norm is lower semicontinuous. Thisv € L"(R").
Application of Poinca&’s inequality to the right hand side of (7.6) shows

/ [Dv|"dx < C/ |Dv|"dx,
Q(y,R/2) QY,R\Q(Y,R/2)

whereC is independent oR. It follows for R — oo thatDv = 0 and in view of
(7.5) thatv = 0. On the other hand the strong convergenceyoin L" implies
that

1
o< [ e @doaPdx = [ o= (s
Q.1 Q.1
This is a contradiction and the lemma is proven. |

Theorem 16 Assume that the hypotheses in Theorem 2 are satisfied witlp p
n. Then the system (1.1), (1.2) has a solution BMOic(£2; R™) NW;"5(2; R™)
for all s < n in the sense of Definition 1 and the a priori estimate
Jullemo,2) + Ullwrsy < C(S, U, [l )
holds for all s< n and all open UCC (2.
Proof. Consider the solutions, of the approximating system (4.1), (4.2). Using
the same methods as in Section 4 one obtdiRgy.s) < C(s) for all s < n

and thusuy converges weakly tar in WS(£2) for all s < n and strongly in
LP(£2) for all p < co. By Lemmata 14 and 15

[ Uk Iemo .2y < CWU, ||lpll. %)

for all openU C {2 and due to the strong convergenceupfin L" we may pass
to the limit in this inequality. O



Elliptic systems with measure-valued right hand side 573

AcknowledgementsMost of this work has been carried out at the Institute for Mathematics at the
University Freiburg and while the authors visited the Institute for Mathematics and its Applications
(IMA) at the University of Minnesota, Minneapolis. They hereby thank both institutions for their
hospitality. GD was partly supported by ARO and NSF through grants to the Center for Nonlinear
Analysis, Carnegie Mellon University, Pittsburgh. NH was supported by the Swiss National Science
Foundation. GD and SM were partly supported by SFB 256 at the University of Bonn. SM would
like to express special thanks to Agnieszkadtahjska and Jan Kristensen. The work on this paper
was partially motivated by their insistence that some calculation can be done much more efficiently
by the use of Young measures.

References

[Bd1] E. J. Balder: A general approach to lower semicontinuity and lower closure in optimal
control theory. SIAM J. Control Optin22 (1984), 570-598

[Bd2] E. J. Balder: On equivalence of strong and weak convergente-gpaces under extreme
point conditions. Israel J. MathY5 (1991), 21-47

[BI] J. M. Ball: A version of the fundamental theorem for Young measures. In: Partial differen-

tial equations and continuum models of phase transitions: Proceedings of an NSF-CNRS
joint seminar. Springer, 1989

[BB] P. Bénilan, L. Boccardo, T. Galldt, R. Gariepy, M. Pierre, J. L. Vazquez: AA-theory
of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (42 (1995), pp. 241-273

[BG] L. Boccardo, T. Gallogt: Non-linear elliptic and parabolic equations involving measure
data. J. Funct. AnaB7 (1989), pp. 149-169

[BM] L. Boccardo, F. Murat: Almost everywhere convergence of the gradients of solutions to
elliptic and parabolic equations. Nonlinear Anaf (1992), pp. 581-597

[DA] A. Dall’Aglio: Doctoral Thesis, Rome, 1992

[DMM1] G. DalMaso, F. Murat: Almost everywhere convergence of gradients of solutions to non-
linear elliptic systems. Preprint S.I.S.S.A. 48/96/M (March 1996)

[DMM2] G. DalMaso, F. Murat: in preparation

[DM] E. DiBenedetto, J. Manfredi: On the higher integrability of the gradient of weak solutions
of certain degenerate elliptic systems. Amer. J. Matth (1993), pp. 1107-1134

[DHM] G. Dolzmann, N. Hungerbhler, S. Miller: The p-harmonic system with measure-valued
right hand side. Ann. Inst. H. Poin@Anal. Non Lireaire14/3 (1997), pp. 353-364

[EG] L. C. Evans, R. Gariepy: Measure theory and fine properties of functions. CRC Press,
Boca Raton (etc.), 1992

[FMP] I. Fonseca, S. Miler, P. Pedregal: Analysis of concentration and oscillation effects gen-
erated by gradients. SIAM J. Math. Anal., to appear
[Fr] J. Frehse: Existence and perturbation theorems for nonlinear elliptic systems. Nonlinear

partial differential equations and their applications, Coll. France Semin., Vol. 4, Res. Notes
Math. 84, 87-111 (1983)

[FR] M. Fuchs, J. Reuling: Non-linear elliptic systems involving measure data. Rendiconti di
Matematical5 (1995), pp. 311-319
equations.

[Hu] R. A. Hunt: OnL(p, q) spaces. Enseign. Math. £1Bérie 12 (1966), pp. 249-276

[KX] T. Kilpel ainen, X. Xiangsheng: On the uniqueness problem for quasilinear elliptic equations
involving measures, Preprint 180, University of agkyh, 1995

[KP] D. Kinderlehrer, P. Pedregal: Young measures generated by sequences in Sobolev spaces.
J. Geom. Anal. 4, No. 1 (1994), pp. 59-90

[La] R. Landes: On the existence of weak solutions of perturbed systems with critical growth.
J. Reine Angew. Math393(1989), pp. 21-38

[Le] J.L. Lewis: On very weak solutions of certain elliptic systems. Comm. Partial Differential

Equations18 (1993), pp. 1515-1537
[LM] P. L. Lions, F. Murat: Solutions renormakes d’equations elliptiques. To appear
[Mul]  F. Murat: Compaci par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Scb (4978),
pp. 489-507



574

Mu2]

[Mu3]
[Ra]

[Si1]
[Si2]
[Ta]

[Tar]

[Ve]
[Val1]

[Val2]

[Zh]

G. Dolzmann et al.

F. Murat: Soluciones renormalizadas de EDP elipticas no lineales. Publications du Labo-
ratoire d’Analyse NurariqueR93023(1993)

F. Murat: Equations elliptiques non lgmires avec second memhre ou mesure. Preprint

J. M. Rakotoson: Generalized solutions in a new type of sets for problems with measure
data. Differential Integral Equatior (1993), pp. 27-36

L. Simon: Theorems on regularity and singularity of energy minimizing maps. Lectures in
mathematics, ETH drich, Birkhauser, Basel, 1996

L. Simon: Schauder estimates by scaling. Calc. Var. Partial Differential EQuéidrg97),

pp. 391-407

G. Talenti: Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces.
Ann. Mat. Pura Appl. (40120 (1979), pp. 159-184

L. Tartar: Compensated compactness and applications to partial differential equations. In:
Nonlinear analysis and mechanics: Heriot-Watt Symp., Vol. 4, Edinburgh 1979, Res. Notes
Math. 39 (1979), 136-212

M. M. Vainberg: Variational method and method of monotone operators in the theory of
nonlinear equations. John Wiley and Sons, New York-Toronto, 1973

M. Valadier: Young measures. Methods of nonconvex analysis (A. Cellina, ed.), Lecture
Notes in Math., vol. 1446, Springer Verlag, Berlin, 1990, 152-188

M. Valadier: A course on Young measures. Workshop on Measure Theory and Real Anal-
ysis (ltalian) (Grado, 1993). Rend. Istit. Mat. Univ. Trie26 (1994), suppl., 349-394
(1995)

K. Zhang: Remarks on perturbated systems with critical growth. Nonlinear A841.992),
1167-1179

Added in proof. We recently proved that in the critical cage= q = n the solution constructed here
satisfiesDu € L"°°(£2), provided R' \ (2 is of typeA. We also establish certain uniqueness results
in this class.



