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1. Introduction

Motivated by Goins [2] and based on our research [4,5], we investigate Heron triangles 
and the corresponding elliptic curves. In particular, we give elementary proofs for some 
results in Goins and Maddox [3] and generalize the main results of [4] and [5].
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In Section 2, we introduce and investigate H-triples: A rational triple (a, b, λ) ∈ Q3 is 
called an H-triple if a, b are non-zero and c :=

√
a2 − 2λab + b2 is rational. This notion 

generalizes Heron triples, for which 
√

1 − λ2 is a positive rational number, and for which 
a Heron triangle exists, i.e., a triangle with integral area and rational sides |a|, |b|, c
such that the cosine of the angle opposite of side c is λ. We start by giving a relation 
between solutions of (p2 − q2)(a2 − b2) = r2 − s2 in positive integers and the existence of 
certain pairs of H-triples. In particular, in Proposition 2 we show that non-zero integers 
p, q, a, b, r, s are an integral solution for the Diophantine equation (p2 − q2)(a2 − b2) =
r2 − s2 if and only if there is a rational λ ∈ Q such that both, (qa, pb, λ) and (pa, qb, λ), 
are H-triples.

Based on Section 2 we investigate families of Heron triangles sharing a given angle 
in Section 3. In particular, we first formulate an algorithm which generalizes a result 
of Fermat’s, to produce infinitely many Heron triangles sharing the same angle and the 
same area. Then, we characterize isosceles Heron triangles by showing in Theorem 6
that there is an isosceles Heron triangle (a, b, c) with a = b if and only if there are 
u, v ∈ N such that v2−u2

u2+v2 = a2+b2−c2

2ab and u2+v2 is a square. Furthermore, we investigate 
pairs of integral isosceles Heron triangles and integral Pythagorean triangles of the same 
area, and show in Proposition 7 that every positive integral solution of the Diophantine 
equation pq(p2 − q2) = 2mn(m2 − n2) · ✷ (where ✷ denotes a square) leads to such a 
pair. Non-trivial solutions of this Diophantine equation are given in Corollary 8. Finally, 
by generalizing a result from [5], we construct triples of integral Heron triangles of the 
same area and sharing an angle from positive solutions of the Diophantine equation 
m = n2 + nl + l2.

In Section 4, we investigate the torsion group and the rank of elliptic curves related 
to Heron triangles, so-called Heronian elliptic curves, which are curves of the form

Eu,v,A : y2 = x3 + v2 − u2

uv
Ax2 −A2x , where A is a positive integer.

Here we use results from Section 3. In particular, we provide a new proof for Theorem 15
which states that the torsion group of a Heronian elliptic curve Eu,v,A is isomorphic either 
to Z/2Z ×Z/2Z or — in the case when there exists an isosceles Heron triangle with area 
A — to Z/2Z ×Z/4Z. The proof given by Goins and Maddox [3, Proposition 3.3] relies on 
Mazur’s Theorem, which states that the torsion group of an elliptic curve is isomorphic 
to one of fifteen groups, and uses twice a symbolic computer package (e.g., MAGMA) 
in order to show that Heronian elliptic curves never have rational points of order 3 or of 
order 8. However, in the proof given below, we do not need computer assistance, and in 
the case when u and v are both odd, we do not even use Mazur’s Theorem. At the end 
of this article, we show — by generalizing a result from [5] — under which conditions 
positive solutions of m = n2 + nl + l2 lead to Heronian elliptic curves of rank at least 2
and provide examples of Heronian elliptic curves of rank 5.
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2. H-triples

2.1. A theorem of Sós

A rational triple (a, b, λ) ∈ Q3, where a, b are non-zero, is called a H-triple if

c :=
√

a2 − 2λab + b2 is rational.

Theorem 1 (Sós). For every H-triple (a, b, λ) there are relatively prime integers m, n ∈ Z

and a rational µ ∈ Q, such that

a = µ(m2 − n2)
b = µ

(
2m(n + λm)

)
(1)

c = µ
(
m2 + 2λmn + n2)

For a proof see Sós [11, p. 189].
Notice that for λ = 0 the set of equations (1) corresponds to the well-known formula 

for rational Pythagorean triples. Notice also that for −1 < λ < 1, the values |a|, |b|, |c|
are the side lengths of a triangle with cos(θ) = λ, where θ := <)ACB.

2.2. The Diophantine equation (p2 − q2)(a2 − b2) = r2 − s2

The following proposition which will be used later on connects H-triples with the 
Diophantine equation (p2 − q2)(a2 − b2) = r2 − s2.

Proposition 2. The non-zero integers p, q, a, b, r, s are an integral solution for the Dio-
phantine equation (p2 − q2)(a2 − b2) = r2 − s2 if and only if there is a rational λ ∈ Q

such that (qa, pb, λ) and (pa, qb, λ) are both H-triples with

s2 = (qa)2 − 2λ(qa)(pb) + (pb)2

and

r2 = (pa)2 − 2λ(pa)(qb) + (qb)2.

Proof. Assume that the non-zero integers p, q, a, b, r, s are a solution for the equation 
(p2 − q2)(a2 − b2) = r2 − s2. Let ā := qa and b̄ := pb and

λ := ā2 + b̄2 − s2

2āb̄
.

Then, λ ∈ Q and
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ā2 − 2λāb̄ + b̄2 = s2,

which shows that (qa, pb, λ) is an H-triple.
Furthermore, we obtain

(pa)2 − 2λ(pa)(qb) + (qb)2 = (pa)2 −
(
(qa)2 + (pb)2 − s2) + (qb)2

= (p2 − q2)(a2 − b2) + s2

= r2,

which shows that (pa, qb, λ) is an H-triple.
For the other implication, assume that (qa, pb, λ) and (pa, qb, λ) are both H-triples, 

and that s2 = (qa)2 − 2λ(qa)(pb) + (pb)2 and r2 = (pa)2 − 2λ(pa)(qb) + (qb)2 are both 
integers. Then

r2 − s2 = (pa)2 − (qa)2 −
(
(pb)2 − (qb)2

)
= (p2 − q2)(a2 − b2) ,

which completes the proof. q.e.d.

3. Heron triples and Heron triangles

3.1. Heron triples

An H-triple (a, b, λ) ∈ Q3 is called a Heron triple if

λ̄ :=
√

1 − λ2 ∈ Q+ and A := λ̄
|ab|
2 ∈ N .

Notice that if (a, b, λ) is a Heron triple, then

λ = 1 − τ2

1 + τ2

for some τ ∈ Q. If we set τ = u
v , where we always assume that u and v are relatively 

prime, then

λ = v2 − u2

u2 + v2 and λ̄ = 2uv
u2 + v2 .

In particular we obtain

A = uv

u2 + v2 ab ,

and since (u, v) = 1 and A is integral, we have that u2 + v2 divides ab. In the sequel we 
will write Q := ab. In particular, it follows that λQ is integral.
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3.2. Heron triangles

If (a, b, λ) ∈ Q3 is a Heron triple and c :=
√
a2 − 2λab + b2, then |a|, |b|, c are the 

lengths of the sides of a triangle with integral area A and λ = cos(θ), where θ is the 
angle opposite to the side c. In abuse of notation, the triple (a, b, c) is called a Heron 
Triangle.

In the case λ = 0 (i.e., for right-angled triangles), Fermat stated in [1] without proof 
a formula which generates for a given rational Pythagorean triangle a new rational 
Pythagorean triangle with the same area. The following two results generalize Fermat’s 
formula to Heron triangles (for a proof of Fermat’s formula see [4, Thm. 3]).

Lemma 3. Let (a, b, λ) be a Heron triple and let (a, b, c) be the corresponding Heron 
triangle. Then

(a2 − b2)2 = c4 + 4λQc2 − 16A2.

In particular,

|a2 − b2| =
√
c4 + 4λQc2 − 16A2.

Proof. First notice that

c4 − 16A2 = (a2 − 2λQ + b2)2 − 4(1 − λ2)Q2 = (a2 − b2)2 − 4λQ(a2 + b2) + 8λ2Q2,

and since a2 + b2 = c2 + 2λQ, we obtain

(a2 − b2)2 = c4 + 4λQc2 − 16A2. q.e.d.

Theorem 4 (Generalized Fermat Algorithm). Let (a0, b0, λ) be a Heron triple with a0 %= b0, 
and let (a0, b0, c0) be the corresponding Heron triangle with integral area A. Further 
assume that λ = v2−u2

u2+v2 where u, v are both odd and relatively prime.
Then the algorithm (an, bn, cn) &→ (an+1, bn+1, cn+1), where

an+1 =
√
c4n + 4λQc2n − 16A2

2cn
= |a2

n − b2n|
2cn

bn+1 = 2anbncn√
c4n + 4λQc2n − 16A2

= 2anbncn
|a2

n − b2n|
(2)

cn+1 = c4n + 16A2

2cn
√

c4n + 4λQc2n − 16A2
= c4n + 16A2

2cn|a2
n − b2n|
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generates an infinite sequence of pairwise distinct Heron triangles with area A. More-
over, the Heron triangles (an, bn, cn) and (an+1, bn+1, cn+1) share the same angle θ =
arccos(λ), opposite the side cn and cn+1 respectively.

Proof. First we show that if (an, bn, λ) is a Heron triple, then (an+1, bn+1, λ) is also a 
Heron triple: Notice that anbn = an+1bn+1. Under the assumption that

c2n = a2
n − 2λanbn + b2n,

we have to show that

c2n+1 = a2
n+1 − 2λan+1bn+1 + b2n+1.

In particular, we have to check that

(c4n + 16A2)2 = (a2
n − b2n)4 − 2λ(a2

n − b2n)2(4anbnc2n) + (4anbnc2n)2,

where 16A2 = 4(1 − λ2)(anbn)2, but this is just a simple calculation.
Now we show that the Heron triangles (an, bn, cn) obtained by Fermat’s Algorithm 

are pairwise distinct: Let (a0, b0, c0) be a Heron triangle. Without loss of generality, we 
may assume that a0, b0, c0 are integral. Since u and v are both odd, v2 −u2 ≡ 0 (mod 8)
and u2 + v2 ≡ 2 (mod 4), say v2 − u2 = 8s, u2 − v2 = 4t + 2. Hence we have

v2 − u2

u2 + v2 = 4s
2t + 1 = 2k · ν

η

for some odd integers ν, η (or ν = 0) and k ≥ 2. Furthermore, since u2 + v2 divides a0b0, 
we have that η | a0b0, in particular, νη · a0b0 is integral. Now,

c20 = a2
0 + b20 − 2k+1 · ν

η · a0b0 .

Let 2l be the greatest common power of 2 which divides both a0 and b0 and let a := a0
2l , 

b := b0
2l , and c := c0

2l . Since η is odd and η | a0b0, we have η | ab. Now, we show that c is 
an odd integer. For this, we consider the following two cases:

a and b are both odd: In this case we have a2 + b2 ≡ 2 (mod 4), and therefore we have

a2 + b2 − 4
(
2k−1 · ν

η · ab
)
≡ 2 (mod 4),

which implies that a2 + b2 − 4
(
2k−1 · ν

η · ab
)

is not a square, and therefore,

a2 + b2 − 2k+1 · ν
η · ab %= c2,

which is a contraction to our assumption that (a0, b0, c0) are the lengths of the sides of 
a Heron triangle.
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Exactly one of a and b is odd: In this case we have that a2+b2 and a2+b2−2k+1 · νη ·ab
are both odd, which implies that c is an odd integer.

So, without loss of generality we may assume that a0, b0, c0 are positive integers, one 
of a0 and b0 is even and the other is odd, and c0 is odd. In particular, c0 is of the form

c0 = r

2k · s
where r is odd, s = 1, and k = 0.

Now, we can follow the corresponding proof for λ = 0 (i.e., u = v = 1), given in [4]: 
Assume that cn is of the form

cn = r

2k · s
,

where r and s are both odd and k ≥ 0. Since an+1, bn+1, cn+1 are rational, |a2
n+1−b2n+1| =√

c4n + 4λQc2n − 16A2 is rational. In particular, there are some odd integers r̄, ̃r, ̄s, ̃s, such 
that

c4n + 16A2 = r̄

24ks̄
and

√
c4n + 4λQc2n − 16A2 = r̃

22ks̃
.

Therefore,

|cn+1| = c4n + 16A2

2cn
√
c4n + 4λQc2n − 16A2

=
r̄

24k s̄

2 · r
2ks · r̃

22k s̃

= 23kss̃r̄

24k+1rr̃s̄
= r′

2k+1s′

for some odd integers r′ and s′. This shows that

cn = r

2k · s
⇒ |cn+1| = r′

2k+1 · s′

where r, s, r′, s′ are odd. q.e.d.

Notice that in the case when u and v are both odd, we always have an %= bn. On the 
other hand, if u + v is odd, it may happen that a0 = b0, in which case the algorithm 
breaks down. However, one can show that if u + v is odd and a0 %= b0, then Fermat’s 
Algorithm generates an infinite sequence of pairwise distinct Heron triangles with area 
A and the same angle θ (see Corollary 16).

3.3. A decoupled version of the Fermat formulas

The recursion (2) consists of three coupled formulas. Only cn+1 can be computed from 
cn alone, whereas the formulas for an+1 and bn+1 require an, bn and cn as input. Here 
we give a decoupled version of the recursion, which is most easily formulated in terms of 
the squares of the sides:
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Proposition 5. Let (an, bn, cn) be the sequence generated by Fermat’s Algorithm in The-
orem 4. Consider the squares

Xn := a2
n, Yn := b2n, Zn := c2n,

and the quantities

µ := X0Y0, ν := Z0 −X0 − Y0.

Then, there holds:

Xn+1 = (X2
n − µ)2

4Xn(X2
n + Xnν + µ)

Yn+1 = 4Ynµ(Y 2
n + Ynν + µ)

(Y 2
n − µ)2

Zn+1 = (Z2
n − ν2 + 4µ)2

4Zn((Zn − ν)2 − 4µ)

Proof. We replace in the formulas for Xn+1, Yn+1, Zn+1 the expressions for µ and ν and 
subtract the corresponding expressions from Theorem 4 for a2

n+1, b
2
n+1, c

2
n+1. Observe 

that A2 = µ
4 − ν2

16 . Short calculations show that the result reduces to zero in all three 
cases. q.e.d.

3.4. Isosceles Heron-triangles

The following result gives a characterization for values of λ, such that corresponding 
Heron triangle (a, b, c) is isosceles with a = b.

Theorem 6. Let cos(θ) = λ, where λ = v2−u2

u2+v2 . Then there is an isosceles Heron triangle 
(a, b, c), with a = b and a corresponding Heron triple (a, b, λ), if and only if u2 + v2 = ✷
(i.e., u2 + v2 is a square).

Proof. If (u, v) = 1 and u2 + v2 = ✷, then there are relatively prime, positive integers 
m and n such that {u, v} = {m2 − n2, 2mn}. Without loss of generality, let us assume 
that u = m2 − n2 and v = 2mn. Then

1 − λ = (u2 + v2) − (v2 − u2)
u2 + v2 = 2u2

u2 + v2 .

Let a = b = m2 + n2 and let c = 2(m2 − n2). Then, we have c2 = 4(m2 − n2)2 and

a2 − 2λab + b2 = 2a2(1 − λ) = 2(m2 + n2)2 2(m2 − n2)2
(m2 + n2)2 = 4(m2 − n2)2,
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which shows that (a, b, c) is an isosceles Heron triangle.
If (a, b, λ) is a Heron triple with a = b, then, by Theorem 1, there are relatively prime 

integers m, n ∈ Z and a rational µ ∈ Q, such that a = µ(m2−n2) and b = µ
(
2m(n +λm)

)
. 

Now, since a = b, we obtain

n = m
( ±2u√

u2 + v2 − 1
)
,

and since n ∈ Z, this implies u2 + v2 = ✷. q.e.d.

3.5. When Heron meets Pythagoras

A pair (a0, b0, 0), (a1, a1, λ) of Heron triples is a Heron-Pythagoras Pair if λ %= 0 and

a0b0
2 = λ̄

a2
1
2 .

By definition, if (a0, b0, 0), (a1, a1, λ) is a pair of Heron triples, then, for

c0 :=
√

a2
0 + b20 and c1 :=

√
2a2

1(1 − λ),

the Heron triangles (a0, b0, c0) and (a1, a1, c1) have the same area and in addition, the 
triangle (a0, b0, c0) is a right-angled triangle and the triangle (a1, a1, c1) is isosceles. We 
call (a0, b0, c0) and (a1, a1, c1) a Pair of Heron-Pythagoras Triangles.

The following result shows how we can construct integral pairs of Heron-Pythagoras 
triangles.

Proposition 7. Every positive integral solution of the Diophantine equation

pq(p2 − q2) = 2mn(m2 − n2) · ✷ (3)

leads to an integral pair of Heron-Pythagoras triangles.

Proof. Let p, q, m, n be a positive integral solution of (3). Let a0 := p2 − q2, b0 := 2pq, 
and c0 := p2 + q2. Then (a0, b0, c0) is a right-angled triangle with area pq(p2 − q2). Now, 
let u := m2 − n2 and v := 2mn. Then u2 + v2 = ✷. Furthermore, we have

λ = 6m2n2 −m4 − n4

(m2 + n2)2 and λ̄ = 4mn(m2 − n2)
(m2 + n2)2

which implies

2 − 2λ =
(2(m2 − n2)

(m2 + n2)

)2
.
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Since pq(p2 − q2) = 2mn(m2 − n2) · ✷,

√
pq(p2 − q2)

2mn(m2 − n2) = s

for some integer s. Finally, let a1 = s(m2 + n2) and let b1 = a1. Then

a2
1 − 2λa1b1 + b21 = a2

1(2 − 2λ) = s2((2(m2 − n2)
)2
.

So, for c1 := 2s(m2 − n2), (a1, a1, c1) is a Heron triangle with area

λ̄

2 a2
1 = 2mn(m2 − n2)

(m2 + n2)2 · s2(m2 + n2)2 = pq(p2 − q2).

Hence, (a0, b0, c0) and (a1, a1, c1) is an integral pair of Heron-Pythagoras trian-
gles. q.e.d.

A positive integer A is called a congruent number if there exists a Heron triple (a, b, 0)
such that the corresponding right-angled Heron triangle is of area A.

Corollary 8. If the integer m > 1 is such that 3m +1 = ✷, then A := m(m2 − 1) and 2A
are both congruent numbers.

Proof. It is easy to show that if A ·✷ is a congruent number, then also A is a congruent 
number. It is also easy to see that for any distinct positive integers r and s, rs(r2 − s2)
is a congruent number. In particular,

pq(p2 − q2), mn(m2 − n2), mn(m2 − n2) · ✷,

are congruent numbers. Hence,

pq(p2 − q2) = 2mn(m2 − n2) · ✷

implies that also 2mn(m2 − n2) · ✷ is a congruent number. Let n := 1, p := 2m, and 
q := m + 1. Then

pq(p2 − q2)
2mn(m2 − n2) =

2m(m + 1)
(
4m2 − (m + 1)2

)

2m(m2 − 1) = 3m + 1.

So, if 3m +1 = ✷, then pq(p2−q2) = 2m(m2−1) ·✷ is a congruent number. This implies 
that 2m(m2−1) is a congruent number, and since m(m2−1) is of the form mn(m2−n2), 
also m(m2 − 1) is a congruent number. q.e.d.
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Notice that for all positive integers k, if k %≡ 0 (mod 3), then k2 ≡ 1 (mod 3), i.e., 
k2 = 3m + 1 for some integer m.

As a matter of fact we would like to mention that up to similitude, there exists a 
unique pair of Heron-Pythagoras triangles which have the same perimeter. The unique 
such pair consists of the right-angled triangle with sides of lengths (377, 135, 352) and 
the isosceles triangle with sides of lengths (366, 366, 132) (see Hirakawa and Matsumura 
[6, Thm. 1.1]).

3.6. Integral Heron triangles related to m = n2 + nl + l2

In this section we show how one can construct with each integral solution of the 
Diophantine equation

m = n2 + nl + l2 (4)

and for every λ = v2−u2

u2+v2 a triple of integral Heron triangles which share the area and an 
angle. The ideas are similar to the ones in [5], where we constructed integral right-angled 
triangles with integral solutions of (4) in the case when m = ✷.

Theorem 9. Let m, n, l be a positive, integral solution of (4) and let k = n + l. Further, 
let λ = v2−u2

u2+v2 , where (u, v) = 1, and let

α = ku2 + lv2, β = nu2 + kv2, γ = nv2 − lu2, δ = u2 + v2.

Assume that γ %= 0. Finally, let

a1 = nlαβ, b1 = mkγδ, c1 = k2l2u4 +
(
l4 − l2n2 + n4)u2v2 + n2k2v4,

a2 = nkαγ, b2 = mlβδ, c2 = l2n2u4 +
(
n4 − n2k2 + k4)u2v2 + k2l2v4,

a3 = lkβγ, b3 = mnαδ, c3 = n2k2u4 +
(
k4 − k2l2 + l4

)
u2v2 + l2n2v4.

Then (a1, b1, λ), (a2, b2, λ), (a3, b3, λ) are Heron triples and (a1, b1, c1), (a2, b2, c2),
(a3, b3, c3) are the corresponding integral Heron triangles which share the area and the 
angle opposite the side ci.

Proof. To show that (ai, bi, λ) is a Heron triple with corresponding Heron triangle 
(ai, bi, ci), we have to show that for each i ∈ {1, 2, 3}, c2i = a2

i − 2λaibi + b2i . This 
can be easily checked by using the equations

m2 − 2mk2 + k4 = l2n2, m2 − 2ml2 + l4 = n2k2, m2 − 2mn2 + n4 = k2l2.

For i ∈ {1, 2, 3}, the area of the Heron triangle (ai, bi, ci) is



L. Halbeisen, N. Hungerbühler / Journal of Number Theory 213 (2020) 232–253 243

A = uv

u2 + v2 aibi = uv · klmn · αβγ.

In particular, the area A does not depend on i. q.e.d.

As a matter of fact we would like to mention that, in contrast to the case studied 
in [5], the Heron triangles (a1, b1, c1), (a2, b2, c2), (a3, b3, c3) are not necessarily pairwise 
distinct. For example, for u = 1, v = 2, l = 1, n = 2, we obtain a2 = a3 = 294, b2 =
b3 = 490, and c2 = c3 = 392. However, with each integral solution of the Diophantine 
equation (4) and for every λ, we obtain at least two different integral Heron triangles 
(see Corollary 17). Moreover, the following proposition tells exactly when we actually 
have three pairwise distinct Heron triangles: It turns out that for each given solution n, l
of (4) at most three values of uv do not lead to a triple of different triangles.

Proposition 10. The Heron triangles (a1, b1, c1), (a2, b2, c2), (a3, b3, c3) in Theorem 9 are 
pairwise distinct if and only if

1. u
v <

√
n
l and uv /∈

{√
n2−l2

k2−n2 , ln , 
n
k

}
, or

2. u
v >

√
n
l and uv /∈

{√
k2−l2

l2−n2 , ln , 
k
l

}

Proof. First observe, that two triangles are congruent if and only if they have the same 
area, the same perimeter and an angle in common: To see this, recall from elementary 
geometry that the perimeter p = 2|CP | together with the angle θ define the excircle ec
(see Fig. 1). On the other hand, the area is given by A = p

2ri, where ri is the radius 
of the incircle i. Hence the incircle is also determined. Therefore, the side c of such a 
triangle is one of the two common inner tangents of i and ec.

Fig. 1. Triangle given by angle θ, perimeter p = 2|CP | and area A = p
2 ri.
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This elementary observation allows now to conclude that two of the triangles (ai, bi, ci)
are different if and only if they have different perimeter. Suppose first, that γ > 0, i.e., 
u
v <

√
n
l . In this case, the perimeters of the triangles are pi = ai + bi + ci and a short 

computation shows that

p1 %= p2 ⇐⇒ u2(k2 − n2) %= v2(n2 − l2), p2 %= p3 ⇐⇒ lv %= nu,

p3 %= p1 ⇐⇒ ku %= nv.

If, on the other hand, γ < 0, i.e., uv >
√

n
l , the perimeters are

p1 = a1 − b1 + c1, p2 = −a2 + b2 + c2, p3 = −a3 + b3 + c3.

Similarly as above, one finds that

p1 %= p2 ⇐⇒ lu %= kv, p2 %= p3 ⇐⇒ nu %= lv,

p3 %= p1 ⇐⇒ u2(l2 − n2) %= v2(k2 − l2). q.e.d.

The phenomenon that, for a given angle θ of θ-triangles, finitely many exceptional 
values for the crucial parameter exist can also be observed in other contexts (see, for 
example, Lalín and Ma [7, Theorem 1 & 2, and Sec. 4]).

4. Heronian elliptic curves

It is well known that the rational points on an elliptic curve form an abelian group. 
Moreover, by Mordell’s Theorem, this group is finitely generated (see, for example, 
Mordell [9, Ch. 16]). Therefore, by the Fundamental Theorem of Finitely Generated 
Abelian Groups, the group of rational points on an elliptic curve is isomorphic to some 
group of the form

Z/n1Z× . . .×Z/nkZ︸ ︷︷ ︸
torsion group

×Zr,

where n1, . . . , nk are positive integers with ni | ni+1, and r is a non-negative integer. 
The group Z/Zn1 × . . . × Z/Znk , which is generated by rational points of finite order, 
is the so-called torsion group, and r is called the rank of the curve. Surprisingly, there 
are just a few possible types of groups for the torsion group of an elliptic curve. More 
precisely, by Mazur’s Theorem (see Mazur [8]), the torsion group of an elliptic curve is 
isomorphic to one of the following fifteen groups:

Z/mZ for m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} , Z/2Z×Z/2nZ for n ∈ {1, 2, 3, 4}.
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4.1. Elliptic curves related to Heron-triangles

In Goins and Maddox [3, Thm. 2.1] it is shown that a positive integer A can be 
expressed as the area of a triangle with rational sides if and only if for some non-zero 
rational τ = u

v the elliptic curve

Eτ,A : y2 = x(x−Aτ)(x + Aτ−1)

has a rational point (x, y) with y %= 0.
In particular, A is a congruent number if and only if the elliptic curve y2 = x3 −A2x

has a rational point (x, y) with y %= 0.
In our setting we have λ = v2−u2

u2+v2 , λ̄ = 2uv
u2+v2 , and

Q = 2A
λ̄

= u2 + v2

uv
A.

With respect to this terminology, the elliptic curve Eτ,A becomes

Eu,v,A : y2 = x3 + v2 − u2

uv
Ax2 −A2x .

This curve can also be written with λ and Q as

Eλ,Q,A : y2 = x3 + λQx2 −A2x ,

which is called Heronian elliptic curve.
So, we obtain the following

Fact 11. There exists a Heron triple (a, b, λ) such that the corresponding Heron triangle 
is of area A, if and only if the Heronian elliptic curve Eλ,Q,A has a rational point (x, y)
with y %= 0.

The correspondence between Heron triangles (a, b, c) with cos(θ) = λ and area A and 
rational points (x, y) with x, y %= 0 on the Heronian elliptic curve Eλ,Q,A is given by the 
following functions:

Ψλ,Q,A

(
(a, b, c)

)
&→

( (a + c)2 − b2

4 , a · (a + c)2 − b2

4

)

Ψ−1
λ,Q,A

(
(x, y)

)
&→

(
y

x
,
Qx

y
,
x2 + A2

y

)
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4.2. Fermat’s algorithm revisited

In order to state the next result, we first introduce the function which corresponds to 
the generalized Fermat Algorithm 4:

Φλ,Q,A

(
(a, b, c)

)
&→

(
|a2 − b2|

2c ,
2abc

|a2 − b2| ,
c4 + 16A2

2c|a2 − b2|

)

Let (a, b, c) be a right-angled Heron triangle of area A. Further, let (x1, y1) :=
Ψ0,Q,A

(
(a, b, c)

)
, and let (x2, y2) := 2 ∗ (x1, y1), i.e., (x2, y2) = (x1, y1) + (x1, y1) on 

the elliptic curve. Finally, let

(x′
2, y

′
2) := Ψ0,Q,A ◦ Φ0,Q,A

(
(a, b, c)

)
.

In [4, Lem. 5] it is shown that (x2, y2) = (x′
2, −y′2). In other words, the two points 

(x2, y2) = 2 ∗ (x1, y1) and (x′
2, y

′
2) just differ in the sign of their y-coordinate.

Now, by the same arguments as in the proof of [4, Lem. 5], by a simple calculation, 
one can show that this result also holds for λ %= 0.

Fact 12. Let (a, b, λ) be a Heron triple with a %= b and with corresponding Heron triangle 
(a, b, c) of area A. Further, let (x1, y1) := Ψλ,Q,A

(
(a, b, c)

)
, let (x2, y2) := 2 ∗ (x1, y1), 

and let (x′
2, y

′
2) := Ψλ,Q,A ◦ Φλ,Q,A

(
(a, b, c)

)
. Then

(x2, y2) = (x′
2,−y′2) .

So, the generalized Fermat Algorithm 4 is essentially doubling points on the curve Eλ,Q,A.

As an immediate consequence we obtain the following

Corollary 13. Let (a, b, λ) be a Heron triple with corresponding Heron triangle (a, b, c) of 
area A. Then, up to the sign of their y-coordinate, the two points

2 ∗ Ψλ,Q,A

(
(a, b, c)

)
and

(
c2

4 ,
c(a2 − b2)

8

)

are equal.

4.3. On the torsion group of Heronian elliptic curves

We first prove the following

Lemma 14. Let A be a positive integer and let λ = v2−u2

u2+v2 for some integers u, v with 
(u, v) = 1. Then Eλ,Q,A contains a point of order 4 if and only if there exists an isosceles 
Heron triangle (a, a, c) with cos(θ) = λ and area A.
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Proof. (⇒) Let (a, a, c) be an isosceles Heron triangle with cos(θ) = λ and area A, and let 
(x0, y0) be the corresponding rational point on the curve Eλ,Q,A. Then, by Corollary 13,

2 ∗ (x0, y0) = 2 ∗ Ψλ,Q,A

(
(a, a, c)

)
=

(
c2

4 ,
c(a2 − a2)

8

)
=

(c2

4 , 0
)
.

Thus, the point (x0, y0) is of order 4.
(⇐) Let (x0, y0) be a rational point on Eλ,Q,A of order 4 and let (a, b, c) be the 

corresponding Heron triangle with cos(θ) = λ and area A. Further, let (x1, y1) := 2 ∗
(x0, y0). Then, since (x0, y0) is of order 4, y1 = 0, and since

(x1, 0) = 2 ∗ Ψλ,Q,A

(
(a, b, c)

)
=

(
c2

4 ,
c(a2 − b2)

8

)
=

(c2

4 , 0
)
,

we have a = b. q.e.d.

The following theorem was first proved by Goins and Maddox (see [3, Proposition 
3.3]).

Theorem 15. Let A be a positive integer and let λ = v2−u2

u2+v2 for some integers u, v with 
(u, v) = 1. Then, for the torsion group Tλ,Q,A of the Heronian elliptic curve Eλ,Q,A, we 
have

Tλ,Q,A
∼=






Z/2Z×Z/4Z if there exists an isosceles Heron triangle (a, a, c)
with cos(θ) = λ and area A,

Z/2Z×Z/2Z otherwise.

Proof. For τ := u
v , the three points (Aτ, 0), (−Aτ−1, 0), and (0, 0) are on the curve 

Eλ,Q,A and have all order 2, and since (Aτ, 0) + (−Aτ−1, 0) = (0, 0), Tλ,Q,A always 
contains Z/2Z ×Z/2Z as a subgroup. We consider first the following case:

u and v are both odd: In this case, we can just follow the proof of [4, Thm. 1]. 
First notice that since u2 + v2 %= ✷, by Theorem 6, there is no isosceles Heron triangle 
(a, a, c) with corresponding Heron triple (a, a, λ). Let (x0, y0) be a rational point on 
the curve Eλ,Q,A with y0 %= 0 and let (a0, b0, c0) := Ψ−1

λ,Q,A

(
(x0, y0)

)
. Since a0 %= b0, 

by Fermat’s Algorithm 4 we obtain infinitely many pairwise distinct Heron triangle 
(an, bn, cn) of the same area A, and by Fact 12, the corresponding points 2n ∗ (x0, y0)
are also pairwise distinct, which shows that the order of (x0, y0) is infinite.

If exactly one of u and v is odd (i.e., u2 + v2 is odd), then we proceed as follows.
First assume that there exists an isosceles Heron triangle (a, a, c) with cos(θ) = λ

and area A, and let (x0, y0) be the corresponding rational point on the curve Eλ,Q,A. 
Then, by Lemma 14, the point (x0, y0) is of order 4, which implies that the torsion group 
Tλ,Q,A contains Z/2Z × Z/4Z as a subgroup. By Mazur’s Theorem, in order to show 
that Tλ,Q,A

∼= Z/2Z × Z/4Z, it is enough to show that Eλ,Q,A does not have a point 
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of order 8. For this, assume towards a contradiction that the rational point (x0, y0) on 
Eλ,Q,A is of order 8. Let

(a0, b0, c0) := Ψ−1
λ,Q,A

(
(x0, y0)

)

be the corresponding Heron triangle. Without loss of generality, we may assume that 
a0, b0, c0 are positive integers. Furthermore, let

(a1, b1, c1) := Φλ,Q,A

(
(a0, b0, c0)

)
and (x2, y2) :=

(
c21
4 ,

c1(a2
1 − b21)
8

)
.

Then, by Corollary 13, up to the sign of their y-coordinate, the two points (x2, y2) and 
4 ∗ (x0, y0) are equal. Since (x2, y2) is of order 2, we have y2 = 0, i.e.,

c1(a2
1 − b21)
8 = 0

which implies a1 = b1. Now,

a1 = |a2
0 − b20|
2c0

and b1 = 2a0b0c0
|a2

0 − b20|
,

and thus, a1 = b1 implies that

(a2
0 − b20)2 = (2c0)2 · a0b0, (5)

and therefore we have a0b0 = ✷. For d := gcd(a0, b0), we have a0 = dα2 and b0 = dβ2

for some integers α and β. Since

c20 = d2(α4 − 2λα2β2 + β4),

equation (5) becomes

d4(α8 − 2α4β4 + β8) = 4d4α2β2(α4 − 2λα2β2 + β4),

and after dividing through d4, we obtain

(α2 − β2)4 = 8α4β4 · (1 − λ).

Now, since 1 − λ = 2u2

u2+v2 , this leads to

(α2 − β2)4 = (2αβ)4 · u2

u2 + v2

and consequently we have
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(
α2 − β2

2αβ

)4
= u2

u2 + v2 . (6)

Since (u, v) = 1, equation (6) implies that u2 as well as u2 + v2 is a forth power, say 
u2 = ν4 and u2 + v2 = η4. So, we have ν4 + v2 = η4, or equivalently, η4 − ν4 = v2, which 
does not have a solution in positive integers. Hence, the point (x0, y0) on Eλ,Q,A is not 
a point of order 8.

Finally, assume that there exists no isosceles Heron triangle (a, a, c) with cos(θ) = λ

and area A. Then, by Lemma 14, Eλ,Q,A does not have a point of order 4. So, by Mazur’s 
Theorem, in order to show that Tλ,Q,A

∼= Z/2Z ×Z/2Z, it is enough to show that Eλ,Q,A

does not have a point of order 3, or equivalently, we have to show that Eλ,Q,A does not 
have a rational point of inflection. Assume towards a contradiction that the rational 
point (x0, y0) on Eλ,Q,A is of order 3 and let (x1, y1) := 2 ∗ (x0, y0). Then x1 = x0 and 
y1 = −y0. Let

(a0, b0, c0) := Ψ−1
λ,Q,A

(
(x0, y0)

)

be the corresponding Heron triangle. Without loss of generality, we may assume that 
a0, b0, c0 are positive integers, and that c0 is even and both a0 and b0 are odd — otherwise, 
we can apply Fermat’s Algorithm 4 and can proceed as in the case when u and v are 
both odd. By Corollary 13,

c20
4 = x1 = x0 = (a0 + c0)2 − b20

4 . (7)

Equation (7) implies that a2
0 + 2a0c0 − b20 = 0 and therefore, for the positive integer a0

we have

a0 =
√
c20 + b20 − c0.

Thus, we have c20 + b20 = (a0 + c0)2, which implies that (c0, b0, a0 + c0) is a Pythagorean 
triple, and hence, we find some positive integers k, m, n with (m, n) = 1, such that 
a0 + c0 = k(m2 + n2), b0 = k · (m2−n2), and c0 = k ·2mn (recall that c0 is even). So, on 
the one hand we have a0 = k(m −n)2, and on the other hand we have c20 = a2

0−2λa0b0+b20. 
Hence,

0 = a2
0 − 2λa0b0 + b20 − c20 = 4m3(m− 2n)u2 + 4n3(−2m + n)v2

u2 + v2

which implies that

m3(m− 2n)u2 = n3(2m− n)v2.

Thus,
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u = ± v · n

m
·

√
n(2m− n)
m(m− 2n) ,

and since u is an integer, this implies that both n(2m − n) and m(m − 2n) are squares, 
say n(2m − n) = p2 and m(m − 2n) = q2. This gives us

m = ±

√
2p2 + q2 − 2

√
p4 + p2q2 + q4

3 .

Now, since m is an integer, this implies that

p4 + p2q2 + q4 = ✷ ,

which is not solvable in positive integers p and q (see, for example, Mordell [9, p. 19]). 
Hence, the point (x0, y0) on Eλ,Q,A is a not a point of order 3. q.e.d.

Remark 1. The proof of Theorem 15 given by Goins and Maddox relies on Mazur’s 
Theorem and uses twice a symbolic computer package (e.g., MAGMA) in order to show 
that Heronian elliptic curves never have rational points of order 3 or of order 8. On the 
other hand, in the proof given above, we do not need computer assistance, and in the 
case when u and v are both odd, we do not even use Mazur’s Theorem. Moreover, it 
might be that there is a proof of Theorem 15 which does not rely on Mazur’s Theorem 
even in the case when exactly one of u and v is odd.

As an immediate consequence of Theorem 15 we get the following two results:

Corollary 16. If (a0, b0, c0) is a Heron triangle with a0 %= b0, then Fermat’s Algorithm 4
generates an infinite sequence of pairwise distinct Heron triangles with the same area A
and the same angle θ.

Proof. If the sequence of Heron triangles is finite, then (a0, b0, c0) must be an isosceles 
triangle with a0 = b0, which contradicts our assumption. q.e.d.

Corollary 17. Among the three Heron triangles we obtained in Theorem 9 from a positive, 
integral solution of (4), at least two are distinct.

Proof. The three Heron triangles correspond to three rational points with non-zero 
y-coordinate on the curve Eλ,Q,A. If we obtain just one point, then a continuity ar-
gument would give us a rational point of inflection on the curve Eλ,Q,A, which is 
impossible. q.e.d.
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4.4. A family of Heronian elliptic curves of rank at least 2

In this section we show how one can construct with integral solutions of the Diophan-
tine equation

m = n2 + nl + l2 (8)

Heronian elliptic curves Eλ,Q,A of rank at least 2. Notice that by Mazur’s Theorem, in 
order to show that an elliptic curve has positive rank, it is enough to find 17 generically 
different rational points on the curve (see, for example, Lalín and Ma [7, Lem. 5]). 
However, to show that the rank of an elliptic curve is at least 2, we have to proceed 
differently.

The construction we use is the same as in the proof of [5, Thm. 3], where we con-
structed congruent number elliptic curves E0,0,A of rank at least 2.

Proposition 18. Let m, n, l be a positive, integral solution of (8) and let k = n +l. Further, 
let λ = v2−u2

u2+v2 , where (u, v) = 1, let

α = ku2 + lv2, β = nu2 + kv2, γ = nv2 − lu2,

and let

A = uv · klmn · αβγ.

Finally, for i ∈ {1, 2, 3}, let (ai, bi, ci) be the three integral Heron triangles we obtain 
from Theorem 9.

Then, under the assumption that A %= 0 and that the following twelve values

(ai ± ci)2 − b2i
4 and (bi ± ci)2 − a2

i

4

are pairwise distinct modulo squares, the rank of the Heronian elliptic curve Eλ,Q,A is 
at least 2.

Proof. As a consequence of a well-known result, which can be found in Silverman and 
Tate [10, Chapter III.6.], a sufficient condition for an elliptic curve E to have rank at 
least 2 is that we find at least 9 rational points (xj , yj) (1 ≤ j ≤ 9) on E, such that for 
any distinct j, j′ ∈ {1, . . . , 12},

xj %= xj′ · ✷ .

Now, since the twelve values given above are x-coordinates of rational points on the 
Heronian elliptic curve Eλ,Q,A (see [5, Thm. 3]), the rank of Eλ,Q,A is at least 2. q.e.d.
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As a matter of fact we would like to mention that in all cases we considered, in order 
to satisfy the assumption in Proposition 18, it is enough that the three Heron triangles 
(ai, bi, ci) obtain from Theorem 9 are pairwise distinct.

5. Odds and ends

1. Theorem 4 was just formulated for u and v both odd, which implies that cn = r
2k·s , 

where r and s are both odd and k ≥ 0, and includes the case when u = v = 1
(i.e., λ = 0). If either u or v is even, then cn may be of the form 2k · r

s where r
and s are both odd and k > 0. Moreover, for u = 32, v = 9, a0 = 663, b0 = 575, 
c0 = 1192 = 23 · 149, we get c1 = 24 · 531448501

1014541 , and in general, for all n ≥ 1, we have 
cn = 24 · r

s for some odd integers r and s.

2. The three points on the curve Eλ,Q,A which correspond to the three Heron triangles 
we obtained in Theorem 9 from a positive, integral solution of (4), are the intersection 
points of a straight line with the curve Eλ,Q,A (see [5] for a similar result in the case 
when λ = 0). In particular, when two of the three points are equal, the straight line 
is a tangent to the curve Eλ,Q,A.

3. As in the case when λ = 0 (see [5, Sec. 3]), it seems that the Heronian elliptic curves 
Eλ,Q,A obtained from Proposition 18 are good candidates for having high rank. For 
example, the following parameters lead to Heronian elliptic curves of rank 5:

u v l n λQ A

1 5 1 8 198863240832 41429841840
1 5 1 10 748641009600 155966877000
1 6 1 9 1571587863300 269415062280
1 6 1 10 2927534679300 501863087880
1 6 2 9 7726084373700 1324471606920
2 5 3 8 3693500328672 1758809680320
2 7 1 12 44530908645600 13854060467520
2 9 1 14 690932437064100 161516673599400
2 9 6 13 29713050037586916 6945907800994344
3 5 12 23 45580866675926400 42732062508681000
4 9 2 9 323225487971100 179017193337840
5 12 1 3 1200153466512 605119394880
5 12 8 9 146025707565431232 73626407175847680

However, with this method we did not find any Heronian elliptic curve of rank 6 or 
higher (for a similar phenomenon see [5, Sec. 3]).
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