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1. INTRODUCTION 

One of the centra! tools in enumeratlve combinatorics is that of generating functions. Gener-

ating functions can, e.g., be used to find the asymptotic behavior of the enumerating sequence 

(e.g., the Hardy-Ramanujan estimate for the partition function P(ri), see [3]) or even may yield an 

explicit formula for the solution (e.g., Rademacher's famous explicit formula for P(n), see [6]). 

Given a combinatorial problem, there are numerous ways to find the corresponding genera-

ting function. One possibility is to start with a recurrence relation, as, e.g., the recurrence for the 

Fibonacci numbers (an)neNo = (0,1,1,2,3,5,8,...), which we write in the following form: 

an = an_2 + an„x + 8h n Vw e Z, 

an = 0 \/n < 0
 W 

(5k n denotes the Kronecker symbol). The z-transformation method requires multiplying (1) by 

zn and summing over n. This yields an algebraic equation for the generating function f{z) = 

I ^ f l / , n a m e l y , 
f(z) = Z2f(z) + zf(z) + Z, 

which is easily solved, giving f(z) = * 2 . The Taylor expansion of this function yields 

/(z)
 - J^? - hw vi 

i.e., we obtain the explicit Euler-Binet* formula for the Fibonacci numbers 

a" = V5 

A second way to find a generating function is to use Polya's index theorem. For example, let 

Mbe the set of all syntactic bracket figures with index n equal to the number of bracket pairs. For 

n - 3, we have the set M3 of three bracket pairs: 

M3 = {[][][], [[[]]],[[][]], [[]][! [][[]]}. 

* This formula was derived by Jacques P. M. Binet in 1843, although the result was known to Euler and to Daniel 
Bernoulli more than a century earlier. 
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By 
M->M1XMXM^JMQ 

we have a bijection between the sets M and MtxMxMKjMQ which Is additive, that is, 

ind([a]5) = 1+ ind(a) + ind(i). Then, by Polya's theorem, the relation between the sets trans-

lates directly into a relation for the generating function for the numbers cn = card(Mw), namely, 

f(z) = zf2(z) + l. 

Taylor expansion of the solution f(z) = ̂ ( 1 - Vl-4z) = TZ=o c^n yields the Catalan numbers 

" n + iynf 

A third way is to use methods from the theory of difference equations, which reach from 

continued fractions to Laplace transformation. As an example, we mention a recent theorem of 

Oberschelp (see [5]) that allows us to transform a difference equation into a differential equation 

for the exponential generating function by a formal procedure. For example, the Sloane-Plouffe 

sequence M1497 in [7], fn9 which counts the number of ways to build a sequence without repeti-

tion with n variables satisfies the recurrence /ra+1 = (n+l)fn + l. Oberschelp's theorem requires 

the exchange 

© 
zk *{?) 

i.e., to replace fn+l by / ' , nfn by zf\ fn hyf9 and 1 by e2. This procedure yields the ordinary 

differential equation (1 - z)f - / = e2 with the solution f(z) = -f^ determined by f(G) = 1. Since 

f(z) is the exponential generating function, we get in fact fn - n\(l+^+• • • + ^ ) . 

Experience shows that the situation becomes considerably more delicate as soon as the prob-

lem requires solving partial difference equations. In this article we want to describe methods 

which allow us to calculate the generating function'from a recurrence relation. The idea is to link 

the Laplace transform directly to generating functions by interpreting the Fourier formula for the 

inverse Laplace transform as a residual integral. The reader who is not familiar with the Laplace 

or Fourier transformation might consult [1] or [8]. The idea is certainly not new; however, we 

would like to show that it applies also to more complicated (e.g., non-local) partial difference 

equations. 

2. AUXILIARY RESULTS 

2.1 Laplace Transfomiatien 

Let (an)n €z, an = 0 for n< 0, be a sequence of real numbers with generating function f(z) = 

Sucz^i^". We call 

ncZ 

the associated ^ep-function. Here, Xi denotes the characteristic function of the set /. Then the 

following theorem holds. 
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Theorem 1: If the Laplace transform X[A] of the associated step-fiinction A exists; it is related 

to the generating function/by 

2[A\(s)=\{i-e-)f(e-). 

Proof: Since we assume A to have at most exponential growth, we may transform term by 
term and obtain 

Writing X[n, «+i[ = ^(' ~ n) ~ ̂ (' ~ (n + W > where H = X[o, oo[ denotes the Heaviside function, and 

using the fact that «££[//] (5) = 7, we obtain, by applying the basic rules for the Laplace trans-

formation, 

aM(*)=£ailie-»*(i-o, 
n=0 

which is what we claimed. D 

The following calculation provides a useful variant of Theorem 1: If jg(e~z) is the Laplace 

transform of a piecewise smooth function G, we have by Fourier's formula for the inverse Laplace 

transformation that, for every point x e R+ where G is continuous, 

G(x) = ±^g(e-^d, 

Here, T is the curve T : IR —> C, th-^ s + it, with s e U large enough, and "pv" denotes the princi-

pal value. If we denote Tn : [0,2;r[-> C, tY->z\ = s + i(t + Imt), we have 

G(x) = - L p v X Jp \g{e->y**dz. (2) 
2m 

Observe that, by the Fourier-series expansion, we have, for x g Z, 

V _ ex{s+i{t+2rm)) _ & 

where \°~\ denotes the ceiling function, i.e., \x~\ is the smallest integer larger than or equal to x. 

Hence, by substituting u = e~z, we obtain from (2) with n = [xj, 

where y: [0,2;r[—» C, t f-> e~Vr, and where |_*J denotes the floor function, i.e., |_ Ĵ is the largest 

integer smaller than or equal to x. Thus, if g is analytic in a neighborhood of 0, we may interpret 

the integral in (3) as the Cauchy residue integral for the rfi1 Taylor coefficient of the function -f̂ -. 

Thus, we have the following corollary. 

Corollary 1: Assume/and gn are analytic functions in a neighborhood of 0 and an is given by 

a»=2^pwLjgn(e~z^eXZdz (4) 
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for some (and hence any) x e]n,n + l[ andT as above. If limz_>0
 / ( z ) ^ ( z ) = o for all n e N0, 

then ^p§- is the generating function of the sequence an. 

Let us briefly mention some advantages that the use of the Laplace transformation provides: 

Suppose we are given a generating function f(u). Only in simple cases is it possible to use direct 

Taylor expansion to obtain a formula for the coefficient an of un. Also, the Cauchy residue an = 

ResM=0^r or (in case of a meromorphic function / ) an = -EResM?£0^^- is often difficult to cal-

culate. In such a situation, it may be helpful to split the residues via the Laplace transformation 

(as in the calculation preceding Corollary 1) in order to obtain an expansion (or at least an asymp-

totic formula) for the an. To illustrate this, let us consider the example of the generating function 

of the Bernoulli numbers 

f(u) = ucotu = \ + YK L\,2"u". 

According to Theorem 1, the Laplace transform of the associated step-function G is 

and we may use the Fourier formula to invert g: ST^KO = ZR.es g(s)e's. The singularities of 

g(s)ets are located at sk m = nmi-log(kx), k eN, m eZ . For t e Z we have 

Res g{sy tS _ 

1-far if m is even, 

—l+k7r , if/wisodd. 

Combining residues for m and —m, we can easily sum the residues for fixed k over all in and 

obtain 

^™--£«&*•• 
(Notice that one obtains a formula for Z^U al\ml by expanding e** on ] - n, /r[ in a Fourier 

series.) Since t e Z (G jumps in Z), we finally get the zeta-function formula for the Bernoulli 

numbers: 

_ + 12(2»)!y 1 
2"~{ } {Inffck2"-

A second benefit of the Laplace transformation are the various rules. For example, by the 

rule W ] ( J ) = s£[f](s)-f(0), we have, for fz(t) := f, that 

Hence, for fixed s, the analytic function 

solves the difference equation shs{z) = zhs{z -1). In particular, for s = 1, we obtain Euler's integral 

representation of the Gamma-function. It is a particular feature of the Laplace-transformation 

method that it can be used to determine the analytic continuation of a discrete function. The 
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Laplace transformation also yields a functional connection between the exponential generating 
function e(x) and the ordinary generating function f(x) of a sequence an. In fact, we have 

£[e](s) = £\ Y %LX" \(s) = Y 3»- £[X"](S) = -f(-

The translation-rule £\f(t-c)(s) = e~scX[f(t)](s) for c > 0 allows us to transform a (linear) 

difference equation into an algebraic equation for the transformed function (this feature is similar 

to the z-transformation). In particular, it is possible to reduce a linear partial difference equation 

with n variables to an equation with n~ 1 variables. For an example, see Section 3.4 or 3.5. 

Another virtue of the Laplace transformation appears when one looks for an asymptotic 

expansion of a sequence or (which is a similar thing) when one treats difference equations which 

show oscillation and damping effects. If one is only interested in the stationary state, one can 

already, at the level of the transformed function, identify terms which lead to exponentially decay-

ing terms in the solution and drop them for the rest of the calculation. 

2*2 The Dual of a Linear Difference Equation 

Many combinatorial problems lead to partial difference equations.' As a prototype example, 

we investigate the two-dimensional case. 

L e t X c Z 2 . For a map p\ X—> R, we consider the linear equation 

&)= X °Z(OP(0, (*) 
{CeX:£esplas} 

where we assume that the cardinality of the support of az (spt az c X) is finite for all z e X, i.e., 

that the sum in (*) is always finite. A set A a X is called stable if for all maps / : A —» R there 

exists a unique solution^ of (*) such that p\A = / . A triple (X, A, *) is called triangular if Xcan 

be written as X = (xi)i eNm such a way that, for all / G N , there holds spt aXi CZAKJ {xl9..., x^}, 

and for all z e A: spt az = {z} and az(z) = 1. In particular we have that, for a triangular triple 

(X, A, *), the set A is stable. 

Now, let (X, A, *) be triangular and / : A —> R be given. Then, for any fixed x = xt eX, the 

solution/? of (*) in x is a finite linear combination of the values off on A, i.e., 

/<*)=X«x(£)/(£>-

In order to determine the weights ax(g), we proceed as follows: 

(i) Put a red mark on x. 

(ii) Replace each red mark on y eX\A by a blue one ony and by ay(Q many red marks on g 

for all £ e spto^. 

(iii) Iterate (ii) until no more red marks o n I \ i exist. 

If n denotes the maximum of the set {/: there is a red mark on xt}, then, in each iteration step, n 

decreases at least by one due to the triangular structure. Hence, the iteration process terminates. 

If we denote by q(£) the number of red marks on £, the quantity 

CeX 
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is invariant during the iteration. Hence, we obtain the result that after the iteration is completed 

the number of (red) marks on £ e A, i.e., q(Q, equals the weight ax(Q. 

If we denote by q(Q the final number of marks (blue or red) on £ (i.e., after termination of 

the iteration), the iteration process described above translates into a partial difference equation for 

the function q: 

{£eAx -.zespta^} 

with q{x) = 1 and with Ax: = trx\A9 where trx is the equivalence class of x with respect to the 

transitive hull of the relation U~V:<=>UG sptav, v £ A. Notice that {Ax, {x}, **) is triangular and 

finite. Let us summarize this result in a theorem. 

Theorem 2: If (X, A,*) is triangular with prescribed values fori A, then the weights ax in the 

solution formula p(x) = T^EA &x(Qf(Q c a n be determined by the iteration scheme (i)-(iii) or, 

equivalently, by solving the dual linear recursion (* *) with initial value q(x) - 1. 

Many transformation problems (for example, the Boustrophedon transformation in [4]) can 

be described as follows: Let (X, A, *) be triangular; then we fix sets A' = {ax,a2,...} c A and 

Xf = {bh b2,...} cz X and prescribe f(at) = <j)i and / = 0 on A \ Af. If we denote the solu-tion 

y/j-pip^, the mapping xIV,xu,/4',*:(^/)h^(^/) *s a l 'near transformation of sequences, the 

associated linear mapping (ALM). The problem of finding its matrix (or the matrix of the inverse 

transformation) can often be solved by using the Laplace transformation technique for the partial 

difference equation for the weights (* *) even in cases where it is not possible to use directly the 

Laplace transformation in the original partial difference equation (*). We will see some examples 

in the following section. 

Before we discuss the examples, we will close this section by stating a simple path-counting 

lemma. 

Lemma 1: Suppose the coefficient functions a in (*) satisfy the following invariance property for 

all z = (n, k) and z' = (n, kf)inX = I2: 

az(n+i9k+j) = az.{n + i,k'+j\ V / , ; e Z . (5) 

Suppose, furthermore, that the column {(0, k): k e Z} is stable and that/? denotes the solution of 

(*) with prescribed values ak on (0, k). Then the column {{N, k): k e Z} is stable for 

p(*)= 5>z(0J>(0 (t) 

where au+v(u) \=au{u + v) and (/77) '•= (h ~j)- Finally, if we prescribe the values ak on (N, k) 

for the equation (f), then ^(0, k) = p(N, k). 

Proof of Lemma 1: We may interpret (*) as a directed graph G with az(Q many edges 

from £ to z. If we set ak :=Skfko, then p(N,k) is the number of paths in G from (0, k0) to 

(N,k). If we flip the graph horizontally by Z H Z and invert the orientation of the edges, we 

obtain a graph G'. Now, (f) describes G' and j?(Q, k) is the number of paths in G' from (N, k0) 

to (0, k) which equals, by construction, the number of paths in G from (0, kQ) to (N, k). 

For general (ak), the claim follows by linearity. D 
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3. EXAMPLES AND APPLICATIONS 

3.1 The Fibonacci Numbers and a Variant of Faulhaber's Formula 

Let X = {(k,n):n>k>0} md A = {(k,n) eX:n e{k,k + l}}. Further, let 

C \- M - W + W H ; for (£,«)£ 4 

' l^fc.A,; otherwise, 

in the equation (*). This is easily seen to be triangular. For the sets A' = {(k, k + l) eA} and 

X' = {(0,n)eX:n>0}, we have that the ALM W^- x* A A * &pphed to the sequence (1, 1,...) 

yields the Fibonacci sequence (f(n))n. Let us calculate the weights via (* *): 

q(k, n) = q(k, n +1) + q(k - 1 , w +1) 

with ^(0, l) = l. This is (up to renumbering) just the recursion for the binomial numbers, i.e., we 

get the "shallow diagonal" sum formula connecting Pascal's triangle to the Fibonacci numbers: 

The binomial weights always occur for this type of equation: For another example, let 

p(k,n);=Y,"=li
k. Obviously, for fixed k, p is a polynomial in n of degree k + l. Faulhaber's 

famous formula expresses this polynomial in the basis {1, n, n2,n3,...}, and the coefficients in this 

basis involve the Bernoulli numbers. Here, we want to express the polynomial in the basis 

o) (")(") (?)-

Consider again the "binomial" difference equation f(k, n) = f(k, n-l) +f(k +1, n -1), this time 

on X-NQ, with initial data /(0,n) = p(k,n-l) for fixed k. The weights for the dual equation 

clearly are, as above, the binomial coefficients; hence, p(k,n-l) = ZJLi(7)/(/, 0), and it remains 

to find / ( / , 0). Since / ( I , n) = nk, we use 

i(f\i\S2(k,i) = nk, (6) 

where S2 denotes the Stirling number of the second kind (see next section). Indeed, each term in 

the sum may be interpreted as the number of sequences in {1,..., n}k with exactly / different num-

bers. Thus, / ( / +1, 0) = i! S2(k, i) and we recover the well-known formula 

/K*,») = £(7+i
1
)^(*.0, 

which one also gets by summing (6). 

3*2 The Stirling Numbers 

The Stirling numbers of the first kind Sx(n9 k) count the permutations of n distinct objects 

that can be written with exactly k disjoint cycles (cf. [2]). They can be computed recursively as 

follows: Sx(n +1, k): = n• Sx(n9 k) + ̂ (w, k-1), where ^(1, k):=Slk. 
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Let Sn(k):=Sx(n,k); then Sn(k) satisfies the recurrence Sn+l(k) = nSn(k) + Sn(k-l). Let 

Ln(s) denote the Laplace transform of the associated step-function of Sn(k). Then we get 

Ln+l(s) = nLri(s) + e-sLn(s) = Ln(s)(n + e-sl with/,(*) = j ( l - 0 - Hence, 

4(')=^o-ono'+*-'). 
Thus, by Theorem 1, we find that 

7=1 

is the generating function for (S^n, k))k. 

The Stirling numbers of the second kind S2(n,k) count the number of groupings of n dis-

tinct objects into k disjoint (nonempty) groups. They can be computed recursively as follows: 

52(w + l,k): = k-S2(n,k) + S2(n,k-l), where S2(l,k):=Shk. 

Let Sk(n) := S2(n, k); then Sk(ri) satisfies the recurrence Sk{n) - kSk(n-1) + Sk_i(n-1). Let 

Lk(s) denote the Laplace transform of the associated step-function of Sk(n). Then we obtain 

Lk($) = ke~sLk(s) + e~sLk_x{s). Therefore, 

e~s A- e~s 

LJs) = Lk Js)— = Us)Yl— 

with L^s) = 7. Thus, by Theorem 1, we get that 

is the generating function for (S2(n, k))n. 

It is well known that the matrix of the Stirling numbers of the first and second kind are 

inverse in the sense that 

/(») = ISi(/i,/M0 

ifandonlyif 

e(n) = fj(-ir
iS2(n,i)f(i). 

Instead of proving this rather special formula, we now investigate more general conditions 

which still imply an inversion formula of the above type. 

3.3 An Inversion Formula 

We consider the following situation: Given a linear equation (*) with Jf = N0 x Z, which sat-

isfies the invariance property (5), we suppose that with A := {(0, k) : k eZ} the triple (X, A, *) is 

triangular. We set A':= {(0,k)\k eM0} and X':={(n90):neN0} and consider the mapping 

*¥xX>,A,A',*:(0i)f_>(Wi)• Notice that the equation (**) for the weights inherits the invariance 

property (5), and hence we can apply Lemma 1 to (* *) and obtain 

?«= i W M a (ft) 
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with p(n,0)-dn0, where au+v(u) : = au+v(u). Then we have 

CO 

7=0 

Now we invert the previous equation: Let Y := M0 x N0 and Yf := {(0, A:): k e N0}- For any 

fixed z e X, we can replace (*) equivalently by the equation 

for arbitrary <̂ 0 e spt az. Assume that for any z e l w e can—by choosing a suitable ^0—replace 

(*) by (*') in such a way that 

• the coefficients a'z respect the invariance relation (5), 

• the triple (7, 7', *') is triangular. 

The equation for the weights for (*') is 

with initial condition g(0,0) = 1 (because (**') satisfies (5)). Then we have 

CO 

A.=E?(
|
">-

/,
)w (

8
) 

Hence, in view of (8) and (7), q and /? are inverse matrices, where q and p satisfy certain differ-

ence equations which are related in the described manner. Notice also that, by choosing <̂ 0 (see 

above), there is a certain freedom in the coefficients af which can be useful sometimes. 

As an example of the previous result, we investigate a generalization of the Stirling numbers. 

Let us define ci^nk)Q,j)\=c(f)Sin_l8jk+dQ)8in_l8jjc+l, where c and d are nonvanishing 

functions. Then the procedure described above yields the following proposition. 

Proposition 1: The numbers st(n, k) and $2(n, k) for («, k) eZx Z, defined by 

^(n, k) = c(w - !)*%(« -l,k) + d(n -l).$i(« -1, k -1) 

and 

«k*> = -3$*fc*- '>+J0^- ' - * - ,> 

with 5i(0,/w) = s2(m, 0) = <5w0, are inverse in the sense that 

00 00 

j=0 i=0 

For special choices of the functions c and d, one easily gets, e.g., the inversion formulas for the 

Stirling numbers (c(n) = n, d{n) - 1), the binomial numbers (c(n) = 1, d(n) = 1), or the numbers 

Q(ri): = (/)/! counting the number of ways to build sequences of length / with n objects without 

repetitions (c(J) - - j , d(l) - })—guess what the inverse numbers are! 
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3.4 The Partition Numbers 

As a further example, we consider the number p(n, k) of partitions of an integer n into parts 

larger than or equal to k. This leads to the (non-local) partial difference equation 

p(n,k)=p(n-k,k) + p(n,k + l), (9) 

with p(n, k) - 0 for k > n > 0 and p(n, n)=l. In the above setting, the problem reads as follows: 

X = N2, A = {(n,k):k>n}, Af = {{n,n)\n E N } , X'= {(n, l):n GN}. Also, for (n,k) eX\A, 

we have 

Pfak) = X Vun-k#j,k +8iJjMi)P<!>^ (10) 

The ALM ^ x u ^ a o ) maps the sequence (1,1,...) into the sequence p(n, 1) = P(n) of the 

partition numbers. The equation for the weights is given by q(n,k) = q(n,k-l) + q(n + k,k) 

with initial conditions q(n, 1) = 1 for n < N and q(n, k) = 0 for n> N. Then we have P(N) = 

Z^i q(i, 0 • By renumbering, this is equivalent to saying 

q(n, k) = q(n, k -1) -f q{n + kyk) (11) 

with q{n, 1) = 1 for all n, q(n, k) = 0forn< 0, and P(N) = Z^i q (i, N-i + l). Note that g (w, £) 

no longer depends on N. Laplace transformation of (11) with respect to the first variable with k 

fixed yields 

with initial value rx(s) = j (since q(l, k) - 1 for k e N). Thus, we have 

and, by Theorem 1, the generating function gk(u) of (rk(n))ri is given by 

From this, it is easy to derive Euler's classical generating function E(u) of the partition numbers 

P(N). But, by interpreting q (n, k) as the number of partitions of n -1 into k or less parts (and 

hence P(n-i) = q(n,n-l) = q(n,ri)), we immediately get from the above calculation together 

with Corollary 1 that 

y = l A u 

Also, if f(s) denotes the Laplace transform of E, it follows from (12) that 

7(1- o f t (i - O)=/(*)£ (_i)L*Jc-*o, 
5 y-i y-i 

where /, = 0,1,2,5,7,... are the pentagonal numbers. Laplace inversion of the last equation yields 

Euler's formula Tf^-lpl-Pin-tj) = S„0. 
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What about counting weighted partitions? Let / : N -> R be a weight function with the 

meaning that we count partitions into / parts / ( / ) many times, or—what is the same thing by 

considering Ferrers diagram—count partitions which largest part of size z, f(i) many times. Then 

the calculation above gives the generating function for this problem: 

So, choosing, e.g.,/as the characteristic function of the even numbers, we compute (e(ri))n = 

(0,1,1,3,3,6,7,12,14,...). 

To conclude this section, let us compute the inverse of the AIM ^ x u ^ c i o ) - Let us put a 

red mark on (Z, L). In view of (10), we can replace a red mark on (n, k) (for n>k>l)by & red 

mark on (n, k -1) , a negative red mark on (n - k +1, k -1), and a blue mark on (n, k). This game 

terminates when all red marks are in A \ Af (these marks are multiplied by 0) or in X' (where a 

mark on (/, 1) is multiplied by y/f). Hence, <f>i = T/%=iijfnG)(L,ri), where co(L,n) denotes the 

number of red marks on (n, 1). 

To compute co(L, n), we consider the directed, finite graph GL with vertices {(«, k): L > n > 

k>\) and an edge from (n, k) to (n\ k!) if k' = k - 1 and n' = n (these edges are called v-edges) 

or if kf = k and nf -n-k (these edges are called h-edges of length k). Now let WL(n) be the 

number of paths through the graph GL from the vertex (L, L) to (n, 1), such that all h-edges have 

different length and each path is weighted by +1 if the number of h-edges contained in the path is 

even, otherwise it is weighted by - 1 . It is easy to see that WL(n) = m{L, n). To compute WL(ri), 

let us first define the function w(m, /, s), which is the number of weighted paths from (m, m) to 

(m-l, 1), such that the maximum of the lengths of h-edges contained in the path equals s (where 

s = 0 means that the path contains no h-edge). For the function w(m, /, s), we have 

w(m, /, s) 

Now, by construction, we obtain 

1 if/ = s=0, 

0 ifs>/ors>[_fJ, 

- Yfj=i w(m -s,l-s,s-j) otherwise. 

L~J 
WL(n) = £w(L,L-n,s). 

s=0 

For example, for L = 12, we get (Wn(n))n = (1, -1,-2,0,2,0,1,0,0, - 1 , -1,1) and, in fact, 

P(12) - P(l 1) - P(10) + P(7) + 2P(5) - 2P(3) - P(2) + P(l) 

= 77-56-42 + 15 + 2 - 7 - 2 - 3 - 2 + l = L 

3.5 A Path Counting Problem 

We consider paths in a three-dimensional lattice: The starting point of the paths is a point 

(x, 0, 0), x G N0, on the x-axis. If (x, y, z) is a point on the path, then a unit step in the positive y 

or z direction is allowed or a step of length y + z +1 in the negative x direction. We want to 

count the number HM(x) of allowed paths starting in (x, 0,0) which end in a given set M c I?, 
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The dual of this problem is given by the non-local linear difference equation 

?ZJW = W
X

)
+

V I W H > - J ' - ^ -
1

) (
13

) 

with q^y(x) := 0 if one of the numbers x9 y, or z is negative and qo9o(0):=l. We already used an 

index notation because we want to Laplace-transform equation (13) with respect to the variable x. 

First, we have QQ^S) = 7, since q0,o(x) = 1 .for x>0. Laplace transformation of (13) yields 

Considering s as a parameter, the solution of this difference equation in y and z is given by 

a-yis)-s{z+zy)u%^(i 

Thus, the generating function of qz^y{x) is 

'z,y\"/-\ z ^ Z + - % T ^ 

Hence, using the notation of Section 3.4, 

Finally, the solution to our path counting problem is given by the formula 

HM(&= Z rz+y+l{x){z+y\ 
{%-x,y,z)eM V / 

For example, let us count the paths starting in (£ 0,0) with at most h unit steps in the z direction 

and such that the total number of unit steps in the negative x and in the positive^ direction equals 

£. This corresponds to the set M = {(x,y,z) e Z3: x = y, z < /?}, and the solution formula yields 

HM(Q= I rzH_^(x)(z+l x 
'z+£-x+l\ 

z<h,x<4 

3.6 Local Linear Difference Equations 

For X = {(£, /) : 0 < k < /} and A = {(£, /): / e {k, k +1, k +2}}, we consider the model equa-

tion 
z(k,l) = alz(k,l-l) + a2z(k + l,!-l) + a3z(k + 2J-l). (14) 

(X, A, (14)) is triangular and, for X' = {(0, /) : / > 3}, the equation for the weights is 

q(k, 1) = axq(k, I + l) + a2q(k -2,1 + 1) + ̂ ^ -I,! + 1) (15) 

with initial condition q(k, L) = Sk0 for a fixed L > 0. Laplace transformation of (15) with respect 

to the variable k with / fixed gives Q(s) - Qi^i{s){ax +a2e~s +a2e~2s) with initial condition QL(s) -

7 (1 - e~s). The solution is 

Ql(S) = l(l-e-s)(al+a2e-s+a3e-2s)L-1, 

and Theorem 1 gives, for the generating function of the sequence (q(k,l))k, the function (al + 

a2u + a3u
2)L~l. Multinomial expansion yields 
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Since (15) does not stop the iteration when a mark lies on A, we have to compensate by setting 

q(k,k+2) = q(k,k + 2\ 

q(k, k +1) = q(k, k +1) - axq(k, k + 2), and 

q(k, k) = q(k, k) - axq(k9 k +1) - a2q(k - 1 , k +1). 

Then, if az is given on z e ̂  as initial data for (14), we get the solution 

^ . ^ t I«H,o?l-i.O. (16) 

In particular, if 0C(k+j,k) ~ Xj (f°r J = 0> 1> 2), z(Q, /) is the solution of xn = a$tn_x +a2
xn-2+a3xn-k 

with initial values x0, x1? x2 and (16) is a root-free representation of the solution. 
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