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Conjugate conics and
closed chains of Poncelet polygons

Lorenz Halbeisen and Norbert Hungerbühler

Abstract. If a point x moves along a conic G then each polar of x

with respect to a second conic A is tangent to one particular conic H,

the conjugate of G with respect to A. In particular, if P is a Poncelet

polygon, inscribed in G and circumscribed about A, then, the polygon

P ′ whose vertices are the contact points of P on A is tangent to the

conjugate conic H of G with respect to A. Hence P ′ is itself a Poncelet

polygon for the pair A and H. P ′ is called dual to P . This process can be

iterated. Astonishingly, there are very particular configurations, where

this process closes after a finite number of steps, i.e., the n-th dual of P

is again P . We identify such configurations of closed chains of Poncelet

polygons and investigate their geometric properties.
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1 Conjugate conics

In order to make this presentation self-contained and to fix notation, we first
describe our general setting. The interested reader will find extensive surveys
about algebraic representations of conics in the real projective plane in [1] or [7].

A projective plane is an incidence structure (P,B, I) of a set of points P, a set
of lines B and an incidence relation I ⊂ P × B. For (p, g) ∈ I, it is custom to
say that p and g are incident, that g passes trough p, or that p lies on g. The
axioms of a projective plane are:

(A1) Given any two distinct points, there is exactly one line incident with both
of them.

(A2) Given any two distinct lines, there is exactly one point incident with both
of them.

(A3) There are four points such that no line is incident with more than two of
them.
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The dual structure (B,P, I∗) is obtained by exchanging the sets of points and
lines, with the dual incidence relation (g, p) ∈ I∗ :⇐⇒ (p, g) ∈ I. (A1)
turns into (A2) and vice versa if the words “points” and “lines” are exchanged.
Moreover, one can prove that (A3) also holds for the dual relation. Hence, if a
statement is true in a projective plane (P,B, I), then the dual of that statement
which is obtained by exchanging the words “points” and “lines” is true in the
dual plane (B,P, I∗). This follows since dualizing each statement in the proof
in the original plane gives a proof in the dual plane.

In this paper, we mostly work in the standard model of the real projective
plane. For this, we consider R3 and its dual space (R3)∗ of linear functionals
on R3. The set of points is P = R3 \ {0}/ ∼, where x ∼ y ∈ R3 \ {0} are
equivalent, if x = λy for some λ ∈ R. The set of lines is B = (R3)∗ \ {0}/ ∼,
where g ∼ h ∈ (R3)∗ \ {0} are equivalent, if g = λh for some λ ∈ R. Finally,
([x], [g]) ∈ I iff g(x) = 0, where we denoted equivalence classes by square
brackets. In the sequel we will identify R3 and (R3)∗ by the standard inner
product ⟨·, ·⟩ which allows to express the incidence ([x], [g]) ∈ I through the
relation ⟨x, g⟩ = 0.

As usual, a line [g] can be identified by the set of points which are incident with
it. Vice versa a point [x] can be identified by the set of lines which pass through
it. The affine plane R2 is embedded in the present model of the projective plane
by the map (

x1
x2

)
7→

x1x2
1

 .
Two projective planes (P1,B1, I1) and (P2,B2, I2) are isomorphic, if there is a
bijective map
ϕ× ψ : P1 × B1 → P2 × B2 such that (p, g) ∈ I1 ⇐⇒ (ϕ(p), ψ(g)) ∈ I2.
The above constructed model, the real projective plane, is self-dual, i.e., the
plane is isomorphic to its dual. Indeed, an isomorphism is given by ([x], [g]) 7→
([x], [g]), since
([x], [g]) ∈ I ⇐⇒ ([g], [x]) ∈ I∗ ⇐⇒ ⟨g, x⟩ = 0 ⇐⇒ ⟨x, g⟩ = 0 ⇐⇒
([x], [g]) ∈ I∗.
Therefore, in particular, the principle of plane duality holds in our model:
Dualizing any theorem in a self-dual projective plane leads to another valid
theorem in that plane.

Two linear maps Ai : R3 → R3, i ∈ {1, 2}, are equivalent, A1 ∼ A2, if A1 = λA2

for some λ ̸= 0. A conic in the constructed model is an equivalence class of a
regular, linear, selfadjoint map A : R3 → R3 with mixed signature, i.e., A has
eigenvalues of both signs. It is convenient to say, a matrix A is a conic, instead
of A is a representative of a conic. We may identify a conic by the set of points
[x] such that ⟨x,Ax⟩ = 0, or by the set of lines [g] for which ⟨A−1g, g⟩ = 0 (see
below). Notice that, in this interpretation, a conic cannot be empty: Since A

6



Conjugate conics and closed chains of Poncelet polygons

has positive and negative eigenvalues, there are points [p], [q] with ⟨p,Ap⟩ > 0
and ⟨q, Aq⟩ < 0. Hence a continuity argument guarantees the existence of
points [x] satisfying ⟨x,Ax⟩ = 0.

From now on, we will only distinguish in the notation between an equivalence
class and a representative if necessary.

Fact 1.1. Let x be a point on the conic A. Then the line Ax is tangent to the
conic A with contact point x.

Proof. We show that the line Ax meets the conic A only in x. Suppose other-
wise, that y ̸∼ x is a point on the conic, i.e., ⟨y,Ay⟩ = 0, and at the same time
on the line Ax, i.e., ⟨y,Ax⟩ = 0. By assumption, we have ⟨x,Ax⟩ = 0. Note,
that Ax ̸∼ Ay since A is regular, and ⟨Ay, x⟩ = 0 since A is selfadjoint. Hence
x and y both are perpendicular to the plane spanned by Ax and Ay, which
contradicts y ̸∼ x. q.e.d.

In other words, the set of tangents of a conic A is the image of the points on
the conic under the map A. And consequently, a line g is a tangent of the conic
iff A−1g is a point on the conic, i.e., if and only if ⟨A−1g, g⟩ = 0.

Definition 1.2. If P is a point, the line AP is called its polar with respect to
a conic A. If g is a line, the point A−1g is called its pole with respect to the
conic A.

Obviously, the pole of the polar of a point P is again P , and the polar of the
pole of a line g is again g. Moreover:

Fact 1.3. If the polar of point P with resepect to a conic A intersects the conic
in a point x, then the tangent in x passes through P .

Proof. For x, we have ⟨x,Ax⟩ = 0 since x is a point on the conic, and ⟨x,AP ⟩ =
0 since x is a point on the polar of P . The tangent in x is the line Ax, and
indeed, P lies on this line, since ⟨P,Ax⟩ = ⟨AP, x⟩ = 0. q.e.d.

The fundamental theorem in the theory of poles and polars is

Fact 1.4. Let g be a line and P its pole with respect to a conic A. Then, for
every point x on g, the polar of x passes through P . And vice versa: Let P be a
point and g its polar with respect to a conic A. Then, for every line h through
P , the pole of h lies on g.

Proof. We prove the second statement, the first one is similar. The polar of
P is the line g = AP . A line h through P satisfies ⟨P, h⟩ = 0 and its pole
is Q = A−1h. We check, that Q lies on g: Indeed, ⟨Q, g⟩ = ⟨A−1h,AP ⟩ =
⟨AA−1h, P ⟩ = ⟨h, P ⟩ = 0. q.e.d.

The next fact can be viewed as a generalization of Fact 1.4:
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Theorem 1.5. Let A and G be conics. Then, for every point x on G, the
polar of x with respect to A is tangent to the conic H = AG−1A in the point
x′ = A−1Gx. Moreover, x′ is the pole of the tangent g = Gx in x with respect
to A.

Proof. It is clear, thatH = AG−1A is symmetric and regular, and by Sylvester’s
law of inertia, H has mixed signature. The point x on G satisfies ⟨x,Gx⟩ = 0.
Its pole with respect to A is the line g = Ax. This line is tangent to H iff
⟨H−1g, g⟩ = 0. Indeed, ⟨H−1g, g⟩ = ⟨(AG−1A)−1Ax,Ax⟩ = ⟨A−1Gx,Ax⟩ =
⟨Gx, x⟩ = 0.
The point x′ = A−1Gx lies on H, since ⟨x′, Hx′⟩ = ⟨A−1Gx,AG−1AA−1Gx⟩ =
⟨Gx, x⟩ = 0. The tangent to H in x′ is Hx′ = AG−1AA−1Gx = Ax which is
indeed the polar of x with respect to A. The last statement in the theorem
follows immediately. q.e.d.

Definition 1.6. The conic H = AG−1A is called the conjugate conic of G
with respect to A.

Remark: Theorem 1.5 generalizes Fact 1.4 in the following sense: If the
conic G degenerates to a point P , the conjugate conic H with respect to A
degenerates to the polar of P with respect to A: Indeed, let A and G be
arbitrary conics, with G33 = 1, and P = (0, 0, 1) a point represented by the
matrix Q = diag(p, q, 0), p, q > 0. The conic Gλ = λG+(1− λ)Q in the pencil
generated by G and Q degenerates to the point P as λ↘ 0. Then

H0 := lim
λ↘0

λAG−1
λ A =

 A2
13 A13A23 A13A33

A13A23 A2
23 A23A33

A13A33 A23A33 A2
33


and 0 = ⟨x,H0x⟩ = (A13x1 + A23x2 + A33x3)

2 agrees with the polar AP of P
with respect to A.

The following facts follow directly from the definition.

• H is conjugate to G with respect to A iff G is conjugate to H with respect
to A.

• G is conjugate to itself with respect to G.

• If H is conjugate to G with respect to A, and G is conjugate to J with
respect to A, then H = J .

2 Chains of conjugate conics

We are now considering a sequence of conics G0, G1, G2, . . . such that Gi+1 is
conjugate to Gi−1 with respect to Gi for all i ≥ 1. Such a sequence will be
called a sequence of conjugate conics.
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Theorem 2.1. G0, G1, G2, . . . is a sequence of conjugate conics iff Gi+1 ∼
G1(G

−1
0 G1)

i for all i ≥ 1.

Proof. We proceed by induction. The formula for i = 1 is just the definition
of conjugate conics. Now let us assume, that the formula is correct for some
index i ≥ 1. Then

Gi+2 ∼ Gi+1G
−1
i Gi+1 ∼

∼ G1(G
−1
0 G1)

i
(
G1(G

−1
0 G1)

i−1
)−1

G1(G
−1
0 G1)

i =

= G1(G
−1
0 G1)

i
(
(G−1

0 G1)
i−1

)−1
G−1

1 G1(G
−1
0 G1)

i =

= G1(G
−1
0 G1)

i+1,

which is the formula for the index i+ 1. q.e.d.

A sequence G0, G1, G2, . . . of conjugate conics is called closed cycle or chain of
length n ≥ 2, if Gk ∼ Gk+n for all k ≥ 0, and if n is minimal with this property.
Then, Theorem 2.1 gives immediately the following:

Theorem 2.2. Let I denote the 3×3 identity matrix. A sequence G0, G1, G2, . . .
of conjugate conics is a closed cycle of length n iff (G−1

0 G1)
n ∼ I and if n is

minimal with this property. In this case, there are representatives of the conics
such that

(G−1
0 G1)

n = I. (1)

Proof. The relation (G−1
0 G1)

n = λI ∼ I (for some λ ̸= 0) is a direct conse-
quence of Theorem 2.1. By replacing G1 by λ−1/nG1, one gets (1). Observe,
that the case n even and λ < 0 does not occur, as can be seen by considering
the determinant of (G−1

0 G1)
n = λI. q.e.d.

Let us briefly discuss the nontrivial solutions S ∈ R3×3 of the equation Sn = I.

Lemma 2.3. Let S ∈ R3×3 and n > 2 be a natural number. Then the following
are equivalent:

(a) S is a solution of Sn = I and Sm ̸= ±I for 1 ≤ m < n.

(b) S = RBR−1 where R ∈ R3×3 is a regular matrix and

B =

ε 0 0
0 cos(2πℓ/n) sin(2πℓ/n)
0 − sin(2πℓ/n) cos(2πℓ/n)


where ε = 1 if n is odd, and ε = ±1 if n is even, and where ℓ ∈
{1, 2, . . . , ⌊n−1

2 ⌋} satisfies

(∗)

{
(ℓ, n) = 1 if ε = 1,

(ℓ, n/2) = 1 and ℓn/2 even if ε = −1.
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If S satisfies one of the above equivalent conditions, then S is diagonalizable,
its eigenvalues are n-th roots of unity, and the minimal polynomial of S is the
characteristic polynomial of S. Moreover:

• If n is odd, then

◦ det(S) = 1,

◦ 1 is an eigenvalue of S of algebraic multiplicity 1, and it is the only
real eigenvalue.

• If n is even, then

◦ det(S) ∈ {−1, 1},
◦ 1 or −1 is an eigenvalue of S of algebraic multiplicity 1, and S has
only one real eigenvalue.

Finally, concerning (b), if x1 is the eigenvector of S corresponding to the real
eigenvalue ε, and x2 the eigenvector to the complex eigenvalue e2πiℓ/n with
positive imaginary part, then the transformation matrix R has the columns
x1,Rex2, Imx2.

Proof. We first assume (a) and show (b): Observe, that two similar matrices
annihilate the same polynomials. Assume that S has a non-diagonal Jordan
decomposition S = TJT−1, then J would also solve Jn = I, which clearly is
not possible. Hence, S is diagonalizable and S = TJT−1 for a regular matrix
T ∈ C3×3 and J = diag(λ1, λ2, λ3) with Jn = I. Hence, the eigenvalues
λm ∈ C are n-th roots of unity and the columns of T are the corresponding
eigenvectors x1, x2, x3. The characteristic polynomial pS(λ) = det(S − λI) has
real coefficients and is of degree 3. Hence, S has at least one real eigenvalue
λ1 = ε, with ε = 1 if n is odd, and ε ∈ {−1, 1} if n is even. On the other hand,
if λ2 is also real, it follows that λ3 is real as well, and thus J2 = I which implies
S2 = I contradicting the assumption in (a). It follows that λ2 = λ̄3 /∈ R and,
without loss of generality, λ2 = e2πiℓ/n for some ℓ ∈ {1, 2, . . . , ⌊n−1

2 ⌋} has a
positive imaginary part.

Since Bm ̸= ±I for 1 ≤ m < n, we get the following conditions for ℓ: If ε = 1,
then, for 1 ≤ m < n, m · ℓ is not a multiple of n (otherwise, Bm = I), which
implies (ℓ, n) = 1. If ε = −1 (which implies that n is even), then, for 1 ≤ m < n
and m even, m · ℓ is not an even multiple of n/2 (otherwise, Bm = I), and
for 1 ≤ m < n and m odd, m · ℓ is not an odd multiple of n/2 (otherwise,
Bm = −I). In other words, if ε = −1, then, for any integer m with 1 ≤ m < n,
if s is a solution for the equation m · ℓ = s · n/2, then s and m must have
different parity. This shows that if n/2 is even then ℓ must be odd (otherwise,
for m = n/2 and s = ℓ we get m · ℓ = s · n/2 where m and s are both even).
Similarly, we get that if n/2 is odd then ℓ must be even. Let us now assume
that n/2 is even and that ℓ is odd. If m · ℓ = s · n/2, where m ̸= n/2, then

10



Conjugate conics and closed chains of Poncelet polygons

(m± n/2) · ℓ = (s± ℓ) · n/2. Now, since n/2 was assumed to be even, m± n/2
has the same parity as m, and since ℓ is odd, s and s± ℓ have different parities.
Hence, if there are integers m, s where 1 ≤ m < n/2 such that m · ℓ = s · n/2,
then there are integers m′, s′ where 1 ≤ m′ < n such that m′ · ℓ = s′ · n/2 and
m′ & s′ have the same parity. So, there are no m′ & s′ with the same parity
which solve the equation m′ · ℓ = s′ · n/2, where 1 ≤ m′ < n and m′ ̸= n/2, if
and only if there are no m & s which solve the equation m · ℓ = s · n/2 where
1 ≤ m < n/2. This gives us the condition (ℓ, n/2) = 1. The case when n/2 is
odd and consequently ℓ is even gives also (ℓ, n/2) = 1, which shows condition
(∗).
Now, let

U =

1 0 0
0 1/2 −i/2
0 1/2 i/2

 .

Then, B = U−1JU , and S = RBR−1 for R = TU ∈ R3×3 with columns
x1,Rex2, Imx2. This shows (b).

An elementary calculation shows, that (b) implies (a).

To conclude, observe, that Sn = I implies det(S)n = 1 and hence det(S) = 1
if n is odd, and det(S) ∈ {−1, 1} if n is even. Finally, since the minimal
polynomial and the characteristic polynomial share the same zeros, they must
agree as we have three simple zeros. q.e.d.

The corresponding lemma for n = 2 is as follows:

Lemma 2.4. Let S ∈ R3×3. Then, the following are equivalent:

(a) S is a solution of S2 = I, S ̸= ±I.

(b) S = RJR−1 where R ∈ R3×3 is a regular matrix, and J = diag(1, 1,−1)
or J = diag(1,−1,−1).

If S satisfies one of the equivalent conditions, the minimal polynomial of S is
p(x) = x2 − 1.

The proof uses the same arguments as in the proof of Lemma 2.3.

2.1 Self-conjugate pairs of conics

Let us consider the case n = 2 in Theorem 2.2: For n = 2, we obtain self-
conjugate pairs of conics. From Lemma 2.4, we know that all solutions S ̸= ±I
of S2 = I are obtained in the form S = R−1JR, where R ∈ R3×3 is regular, and
J ∈ R3×3 is a diagonal matrix with diagonal elements in {−1, 1} with mixed
signature. (Observe, that here we exchange the rôle of R and R−1 compared
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to Lemma 2.4, because the resulting formulas turn out slightly nicer.) Then,
S = G−1

0 G1, i.e.,
G1 = G0R

−1JR. (2)

By a suitable projective map, we may assume without loss of generality, that
G0 = diag(1, 1,−1) is a circle. Observe, that we only accept solutions for G1

in (2) which are selfadjoint and have mixed signature. We restrict ourselves to
the discussion of the case J = diag(1, 1,−1).

It is then easy to see that G1 = G⊤
1 in (2) implies

R11R31 +R12R32 −R13R33 = R21R31 +R22R32 −R23R33 = 0. (3)

In other words, the first two rows of R are orthogonal to the third one with
respect to the Minkowski inner product x⊤Jy induced by J . Condition (3) is
actually sufficient for G1 to be symmetric as it implies that

G1 = G0R
−1JR =

−1

R2
31 +R2

32 −R2
33

R2
31 −R2

32 +R2
33 2R31R32 2R31R33

2R31R32 −R2
31 +R2

32 +R2
33 2R32R33

2R31R33 2R32R33 R2
31 +R2

32 +R2
33

 (4)

is symmetric and together with G0 a solution of (1) for n = 2. The eigenvalues
of G1 are

1, −

(
R33 +

√
R2

31 +R2
32

)2

R2
31 +R2

32 −R2
33

, −

(
R33 −

√
R2

31 +R2
32

)2

R2
31 +R2

32 −R2
33

.

Hence, G1 has mixed signature iff the third row of R is spacelike with respect

to the Minkowski inner product induced by J , i.e., R2
31 + R2

32 > R2
33. We

therefore obtain:

Proposition 2.5. Let J = diag(1, 1,−1), and R ∈ R3×3 be such that its
first and second row are orthogonal to the third row with respect to the
Minkowski inner product induced by J and the third row is spacelike. Then
G0 = diag(1, 1,−1) and G1 = G0R

−1JR is a closed chain of conjugate conics
of length 2. In other words, the polar p of every point P on G0 with respect to
G1 is tangent to G0, and the polar q of every point Q on G1 with respect to G0

is tangent to G1.

Figure 1 shows an example of such a self-conjugate pair G0, G1 of conics.

Formula (4) constitutes a map G1 : U ⊂ R3 → R3×3 from an open set U into
the 3 × 3 matrices: Obviously, G1(R31, R32, R33) = G1(λR31, λR32, λR33) for
all λ ̸= 0. Hence, if we choose

ζ : R2 → R3, (ϕ, ψ) 7→ (coshψ cosϕ, coshψ sinϕ, sinhψ)

we can describe the set of solutions by composing G1 ◦ζ to obtain the following
proposition.
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G0

G1

Q

q

P

p

Figure 1: An example of a self-dual pair of conics: The polar p of every point
P on G0 with respect to G1 is tangent to G0, and the polar q of every point Q
on G1 with respect to G0 is tangent to G1.

Proposition 2.6. Let G0 = diag(1, 1,−1). Then, the component of selfad-
joint solutions G1 of (G−1

0 G1)
2 = I with mixed signature which contains G1 =

diag(1,−1, 1) is a two dimensional immersed manifold in R3×3, parametrized
by

G1(ϕ, ψ) =

sinh2 ψ + cos(2ϕ) cosh2 ψ sin(2ϕ) cosh2 ψ cosϕ sinh(2ψ)

sin(2ϕ) cosh2 ψ sinh2 ψ − cos(2ϕ) coshψ2 sinϕ sinh(2ψ)

cosϕ sinh(2ψ) sinϕ sinh(2ψ) cosh(2ψ)


for (ϕ, ψ) ∈ R2.

Proof. It is easy to check that the rank of the differential of this map is 2.
q.e.d.

The case G0 = diag(1, 1,−1) and J = diag(1,−1,−1) is similar and yields a
second component of solutions via (2). Interestingly, the characteristic poly-
nomial of the pencil generated by G0, G1 is an invariant, which distinguishes
both cases:

Lemma 2.7. Let G0, G1 be two arbitrary different conics solving (1) for n =
2, i.e., G1 = G0R

−1JR for a suitable regular matrix R ∈ R3×3 and J =
diag(λ0, λ1, λ2), λi ∈ {−1, 1}, with mixed signature. Then, det(G1 − λG0) is,
up to a factor, equal to the characteristic polynomial of J .
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Proof. We have

det(G1 − λG0) = det(G0R
−1JR− λG0)

= det(G0) det(R
−1JR− λI)

= det(G0) det(J − λI) (5)

q.e.d.
We will encounter a similar phenomenon for values n > 2.

2.2 Closed chains of conjugate conics

Theorem 2.8. There are closed chains of conjugate conics of arbitrary length.

The proof is constructive:
Proof. Let

G0 =

1 −0 −0

0 −1 −0

0 −0 −1

 , J =

− cos( 2πn ) sin(2πn ) 0

− sin( 2πn ) cos( 2πn ) 0

0 0 1

 , R =

−1 0 5
4

−0 3
4 0

− 5
4 0 1

 ,

and G1 = G0R
−1JR. Then, for Gi+1 = Gi−1G

−1
i−2Gi−1, we have by induction

for i ≥ 1

Gi =


1
9 (25− 16 cos( 2iπn )) − 4

3 sin(
2iπ
n ) − 40

9 sin( iπn )2

− 4
3 sin(

2iπ
n ) − cos( 2iπn ) − 5

3 sin(
2iπ
n )

− 40
9 sin( iπn )2 − 5

3 sin(
2iπ
n ) 1

9 (16− 25 cos( 2iπn ))


and in particular, Gn = G0 and Gi ̸= Gj for 0 ≤ i ̸= j < n. G1 has mixed
signature, since the eigenvalues are

−1,
1

18

50− 32 cos

(
2π

n

)
±

√(
32 cos

(
2π

n

)
− 50

)2

− 324

 . (6)

q.e.d.

Remark: By the implicit function theorem it is easy to check that there is a
differentiable function

ρ : U ⊂ R6 → R3, (R11, R12, R21, R22, R31, R32) 7→ (ρ13, ρ23, ρ33)

on an open set U such that for G0 and J as in the proof above, and for

R =

R11 R12 ρ13
R21 R22 ρ23
R31 R32 ρ33
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the matrix G1 = G0R
−1JR is symmetric and has mixed signature. In parti-

cular G0, G1 solve (1).

Figure 2 shows a closed chain of conjugate conics of length n = 27 as con-
structed in the proof of Theorem 2.8.

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

Figure 2: Closed chain of conjugate conics of length n = 27.

3 Closed chains of dual Poncelet polygons

In 1813, while Poncelet was in captivity as war prisoner in the Russian city of
Saratov, he discovered his famous closing theorem which, in its simplest form,
reads as follows (see [8]):

Theorem 3.1. Let K and C be smooth conics in general position which neither
meet nor intersect. Suppose there is an k-sided polygon inscribed in K and
circumscribed about C. Then for any point P of K, there exists a k-sided
polygon, also inscribed in K and circumscribed about C, which has P as one of
its vertices.

See [3], [4] for classical overviews about Poncelet’s Theorem, or [5] for a new
elementary proof based only on Pascal’s Theorem.

Figure 3 shows the case of two Poncelet polygons with five vertices. Observe,
that the polar of a vertex of a Poncelet polygon on K with respect to C joins
the contact points of its ajacent sides with C. Therefore, we have:

Theorem 3.2. Let K and C be conics, and P a Poncelet polygon, inscribed in
K and circumscribed about C. Then, the polygon whose vertices are the contact
points of P on C is tangent to the conjugate conic of K with respect to C. Vice
versa: The polygon formed by the tangents in the vertices of P on K has its
vertices on the conjugate conic to C with respect to K.
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C

K

Figure 3: Two Poncelet pentagons.

Two Poncelet polygons which are related in the way described in Theorem 3.2
will be called dual. See Figure 4 for an illustration.

C

K

Figure 4: A Poncelet polygon (red) and its “inner” (blue) and “outer”
(yellow) dual.

The process of forming dual Poncelet polygons can be continued iteratively in
both directions. It has been observed in [6], that such chains of dual Poncelet
polygons may close in finite projective planes. At first sight, it is counter
intuitive that this phenomenon could occur in the real projective plane as well.

Let us nonetheless try to find conics G0, G1 which carry a Poncelet polygon,
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and which, at the same time, build a closed chain G0, G1, . . . , Gn = G0 of
conjugate conics. We already know, that equation (1) must hold in order to
satisfy the second condition. For the first condition, namely that G0, G1 carry
a Poncelet k-gon, we recall the Cayley criterion (see [2]):

Theorem 3.3 (Cayley criterion). Let G0, G1 be conics, D(λ) = det(G0+λG1),
and √

D(λ) = c0 + c1λ+ c2λ
2 + c3λ

3 + . . .

Then, there exists a Poncelet k-gon with vertices on G1 and tangent to G0 if
and only if

det


c3 c4 . . . cp+1

c4 c5 . . . cp+2

. . .
cp+1 cp+2 . . . c2p−1

 = 0 for k = 2p,

or

det


c2 c3 . . . cp+1

c3 c4 . . . cp+2

. . .
cp+1 cp+2 . . . c2p

 = 0 for k = 2p+ 1.

We have seen in the previous section, that the solution set of (1) has a mul-
tidimensional parameter space and consists of several connected components.
For n = 2 it follows from Lemma 2.7, that D(λ) is, up to a factor, constant on
each of these components. It turns out, that this holds true for n > 2 as well:

Lemma 3.4. Let G0, G1 be two conics satisfying (G−1
0 G1)

n = I, n > 2,
(G−1

0 G1)
m ̸= ±I for 1 ≤ m < n, and D(λ) = det(G0 + λG1) the charac-

teristic polynomial of the pencil generated by G0, G1. Then D(λ) is, up to a
factor,

(λ+ ε)(λ2 + 2λ cos(2ℓπ/n) + 1)

where ε = 1 if n is odd and ε = ±1 if n is even, and where ℓ ∈ {1, 2, . . . , ⌊n−1
2 ⌋}

satisfies {
(ℓ, n) = 1 if ε = 1

(ℓ, n/2) = 1 and ℓn/2 even if ε = −1.

Proof. By Lemma 2.3, we have G1 = G0RBR
−1 for a regular matrix R ∈ R3×3

and

B =

ε 0 0
0 cos(2πℓ/n) sin(2πℓ/n)
0 − sin(2πℓ/n) cos(2πℓ/n)
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with ε and ℓ as specified above. Hence,

D(λ) = det(G0 + λG1)

= det(G0 + λG0RBR
−1)

= det(G0) det(I + λRBR−1)

= det(G0) det(I + λB)

= det(G0)(1 + λε)(1 + 2λ cos(2ℓπ/n) + λ2)

which completes the proof. q.e.d.

The converse is also true:

Lemma 3.5. Let G0 ̸= G1 be two conics and D(λ) = det(G0 + λG1). Suppose
that D(λ) is, up to a factor, of the form

(λ+ ε)(λ2 + 2λ cos(2ℓπ/n) + 1)

where ε = 1 if n is odd and ε = ±1 if n is even, and where ℓ ∈ {1, 2, . . . , ⌊n−1
2 ⌋}

satisfies {
(ℓ, n) = 1 if ε = 1

(ℓ, n/2) = 1 and ℓn/2 even if ε = −1.

Then, (G−1
0 G1)

n = I, and (G−1
0 G1)

m ̸= ±I for 1 ≤ m < n.

Proof. The characteristic polynomial of G−1
0 G1 is

det(G−1
0 G1 − λI) = det(G−1

0 ) det(G1 − λG0)

= det(G−1
0 )(−λ)3 det(G0 +

1

−λ
G1)

= det(G−1
0 )(−λ)3D(− 1

λ
)

= (1− λε)(1− 2λ cos(2πℓ/n) + λ2)

up to a factor. The roots are ε and e±2πiℓ/n. Hence, the characteristic poly-
nomial of G−1

0 G1 is a factor of V (λ) = λn − 1. Thus, the claim follows by the
Cayley-Hamilton Theorem. q.e.d.

The question is now, for which n (the length of a cycle of conjugate conics
starting with G0, G1), ℓ (the parameter in D(λ) in the Lemmas 3.4 and 3.5)
and k (the length of the Poncelet polynomial), the Cayley criterion is satisfied.
In the following theorem we consider the case n = 3.

Theorem 3.6. Each closed chain of conjugate conics of length n = 3 carries
closed Poncelet triangles. Moreover, the third dual of the first Poncelet triangle
is again the first Poncelet triangle.
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Remark: Observe, that (G−1
0 G1)

3 = I is equivalent to (G−1
1 G0)

3 = I. In
particular, no matter whether we start with a Poncelet triangle with vertices
on G0 which is tangential to G1 or the other way round, we always get a closed
cycle of dual Poncelet triangles.

Proof of Theorem 3.6. By the Lemma 3.4, we have that D(λ) = 1 + λ3 and

√
D(λ) = 1 +

λ3

2
− λ6

8
+
λ9

16
− 5λ12

128
+ . . .

up to a factor. For p = 1 and k = 2p + 1 = 3, the determinant in the Cayley
criterion is c2 = 0, the coefficient of λ2, which shows the first part of the
theorem.

For the second part, let G0, G1, G2 be a closed chain of conjugate conics and
let ∆0,∆1,∆2 be three Poncelet triangles such that ∆i has its vertices on
Gi and the vertices of ∆i+1 are the contact points of ∆i, where we take in-
dices modulo 3. Let A,B,C be the vertices of ∆0. By a projective trans-
formation we may assume that C = (0, 0, 1), and that the contact points
of AC,BC,AB are (1, 1, 0), (−1, 1, 0), (0,−1, 1) respectively. Recall that any
four point, where no three of them are collinear, can be mapped by a projec-
tive transformation to any four points, where no three of them are collinear.
Thus, (1, 1, 0), (−1, 1, 0), (0,−1, 1) are the vertices of ∆1. Now, since a conic
is uniquely defined by two tangents with their contact points and an addi-
tional point, we get that G1 is a hyperbola. Moreover, G1 is the hyperbola
x2 − y2 + z2 = 0, which implies that A = (−1,−1, 1) and B = (1,−1, 0).
Let P,Q,R be the vertices of ∆2, where P is the contact point of the line
(−1, 1, 0)− (1, 1, 0), Q the contact point of (0,−1, 1)− (−1, 1, 0), and R that of
(0,−1, 1)− (1, 1, 0). In particular we get that G2 has just one point at infinity,
namely P , which shows that G2 is a parabola. Since P is a point at infinity, we
get that the two tangents PQ and PR to G0 are parallel. Since the parabola is
uniquely defined by the three tangents (−1, 1, 0)−(1, 1, 0), (0,−1, 1)−(−1, 1, 0),
(0,−1, 1) − (1, 1, 0) and the two contact points P and Q, the contact point R
on (0,−1, 1)− (1, 1, 0) is determined. Moreover, by an easy calculation we get
that AA′ = BB′, where A′ and B′ are the intersection points of AB with PQ
and PR respectively (see Figure 5).

If A = A′, then B = B′ and QR is tangent to G0 with contact point C, which
shows that the third dual of ∆0 is again ∆0.
Otherwise, G0 is a conic containing A,B,C where PQ,QR,RP are tangents.
In general, there are four conics going through three given points and having
two given tangents (see Figure 6). So, there are four conics going through
A,B,C with tangents PQ and PR. However, there are just two conics going
through the three points A,B,C with the three tangents PQ,QR,PR. In fact,
the two conics turn out to be two ellipses, both with center Z = (0,−1, 1),
where PQ,QR,RP are three sides of a rhombus which is tangential to G0 (see
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Figure 7). Let U and V be the contact points of PQ and PR with one of these
ellipses. Then, UV goes trough Z and since AB is a tangent to G1 with contact
point Z and AB is different from UV , we get that UV is not tangent to G1.
Hence, ∆PQR is not the second dual of ∆0; which completes the proof.

q.e.d.

C

A B

P

A′ B′

Q

R

Figure 5 The situation when A ̸= A′.
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A
B

C
Q

R

Figure 6 The four ellipses going
through A,B,C with tangents
PQ and PR (where P is at in-
finity).

C

A B

P

A′ B′

Q

R

V

U

Figure 7 One of the two ellipses
going through A,B,C with tangents
PQ,PR,QR.
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Figure 8: shows such a configuration. Observe, that the triangles move together
if one of the vertices moves along its conic. The nine vertices of the three
triangles form a Pappus configuration.

Figure 8: The red triangle is inscribed in the red ellipse and tangent to the
green hyperbola. The blue triangle is inscribed in the blue ellipse and tangent to
the red one. The green triangle is inscribes in the green hyperbola and tangent
to the blue ellipse. Each vertex of a triangle is contact point of a side of its
dual. The tangent in the point of intersection of two of the conics is tangent
to the third conic. This is the limiting situation if the triangles degenerate to
a line.

The situation we encountered above of a closed chain of three conjugate conics
which carries a closed chain of dual Poncelet triangles is quite miraculous.
Thus, we shall call such chains miraculous chains of Poncelet triangles. The
question arises whether other miraculous chains exist. A first result is, that
miraculous chains which carry Poncelet triangles must be of length 3:

Proposition 3.7. If G0, G1 induces a closed chain of conjugate conics of length
n which carries Poncelet triangles, then n = 3.

Proof. For a closed chain of conjugate conics of length n, we have by Lemma 3.4
that D(λ) is of the form (λ+ ε)(λ2 + 2λa+ 1), where a = cos(2πℓ/n), ε = 1 if
n is odd, ε = ±1 if n is even, and where ℓ ∈ {1, 2, . . . , ⌊n−1

2 ⌋} is such that{
(ℓ, n) = 1 if ε = 1

(ℓ, n/2) = 1 and ℓn/2 even if ε = −1.

If the chain carries Poncelet triangle, we get by the Cayley criterion for triangles
that a is a solution of 3 + 4εa − 4a2 = 0. For ε = 1 this implies that the
possible values for a are −1/2 and 3/2. Now, a = 3/2 is impossible since
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cos(2πℓ/n) ̸= 3/2. So, we must have a = −1/2, which implies that ℓ/n = 1/3
and hence n = 3. For ε = −1, the possible values for a are 1/2 and −3/2.
Again, a = −3/2 is not possible, and hence a = 1/2 which implies n = 3.

q.e.d.

Before we investigate whether there are also miraculous chains of Poncelet
quatrilaterals or of other Poncelet n-gons, we investigate some geometrical
properties of miraculous chains of Poncelet triangles.

Given a general Pappus configuration of nine points and nine lines, one may
ask whether it carries three conics as in Figure 8 Each of the three conics passes
through three of the nine points, and in each of these points the conic is tangent
to one of the three lines which pass through the point. However, this will in
general not be the case. Brianchon’s Theorem implies, that in a triangle which
is tangent to a conic, the three lines joining a vertex of the triangle and the
opposite contact point are concurrent:

Figure 9: A consequence of Brianchon’s Theorem

So, this condition must hold in each of the three triangles that are circumscribed
in one of the tree conics. Surprisingly, if the condition holds in one of the
triangles, it holds in all three triangles:

Lemma 3.8. Let Aij, 1 ≤ i, j ≤ 3 be a Pappus configuration, i.e., three points
are collinear and lying on the line ℓαβ iff j+αi+β = 0 mod 3 (see Figure 3.8).
Furthermore, we define the following three quadruples Hk (1 ≤ k ≤ 3) of points:

H1 : ℓ00 ∧ ℓ01, A00, A10, A20

H2 : ℓ01 ∧ ℓ02, A22, A12, A02

H3 : ℓ00 ∧ ℓ02, A01, A11, A21

Finally, we define the following three triples Tk (1 ≤ k ≤ 3) of lines (see
Figure 3.8):

T1 : A00 −A02, A10 −A11, A20 −A22 (red)

T2 : A02 −A01, A21 −A22, A12 −A10 (green)

T3 : A00 −A01, A21 −A20, A12 −A11 (blue)
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ℓ00

ℓ01

ℓ02

ℓ10

ℓ22

ℓ12 ℓ21

ℓ11
ℓ20

A02 A22

A00

A20

A12

A10

A21 A11
A01

Figur 10 Pappus’ Theorem. The dashed lines form the triple Ti (1 ≤ i ≤ 3).

Then, for 1 ≤ k ≤ 3, we get:

(a) Tk is concurrent iff Hk is harmonic.

(b) If one of the quadruples Hk of points is harmonic, all quadruples are
harmonic.

(c) If one of the triples Tk of lines is concurrent, all triples are concurrent.

Proof. Part (a) is an immediate consequence of the theorems of Menelaos and
Ceva, and (c) follows by (a) from (b). So, we just have to prove (b):

ℓ00 ∧ ℓ01, A00, A10, A20 H1 is harmonic

⇒ ℓ01, ℓ10, A10 −A12, ℓ22 is a harmonic pencil

⇒ ℓ01 ∧ ℓ02, A01, ℓ02 ∧ (A10 −A12), A21 are harmonic points

⇒ A10 − (ℓ01 ∧ ℓ02), ℓ12, A10 −A12, ℓ21 is a harmonic pencil

⇒ ℓ01 ∧ ℓ02, A22, A12, A02 H2 is harmonic

⇒ ℓ02, ℓ20, A11 −A12, ℓ11 is a harmonic pencil

⇒ ℓ00 ∧ ℓ02, A00, ℓ00 ∧ (A11 −A12), A20 are harmonic points

⇒ A12 − (ℓ00 ∧ ℓ02), ℓ10, A11 −A12, ℓ22 is a harmonic pencil

⇒ ℓ00 ∧ ℓ02, A21, A11, A01 H3 is harmonic

⇒ ℓ00, ℓ21, A11 −A10, ℓ12 is a harmonic pencil

⇒ ℓ00 ∧ ℓ01, A02, ℓ01 ∧ (A11 −A10), A22 are harmonic points

⇒ A11 − (ℓ00 ∧ ℓ01), ℓ11, A11 −A10, ℓ20 is a harmonic pencil

⇒ ℓ00 ∧ ℓ01, A20, A10, A00 H1 is harmonic
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q.e.d.

As a consequence we get the following

Corollary 3.9. Let Aij, 1 ≤ i, j ≤ 3 be a Pappus configuration, i.e., three
points are collinear and lying on the line ℓαβ iff j + αi + β = 0 mod 3 (see
Figure 3.8). Then, the following are equivalent:

• The lines A00 −A02, A10 −A11, A20 −A22 are concurrent.

• The points ℓ00 ∧ ℓ01, A00, A10, A20 are harmonic.

• The configuration carries a closed Poncelet chain for triangles of length
three: There are three conics C1, C2, C3 such that

the triangle A00A11A20 is inscribed in C1 and circumscribed about C3

the triangle A01A12A21 is inscribed in C2 and circumscribed about C1

the triangle A02A10A22 is inscribed in C3 and circumscribed about C2

We close the discussion of miraculous chains of Poncelet triangles with the
following

Proposition 3.10. Let G0, G1, G2 be a closed chain of conjugate conics and
∆0,∆1,∆2 be three Poncelet triangles such that ∆i has its vertices on Gi and
the vertices of ∆i+1 are the contact points of ∆i, where we take indices mod-
ulo 3. Then the Brianchon point of ∆i lies on Gi.

Figure 11 The Brianchon point of the red triangle lies on the red conic.

Proof. We apply Pascal’s Theorem: Let P be the intersection of the triple T2
(green in Figure 3.8). Consider the hexagon

P −A22 −A22 −A10 −A02 −A02
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Five of these points lie on the green hyperbola. The sixth point P also lies on
this hyperbola if the intersections of opposite sides of the hexagon are collinear.
And indeed, these intersections are A21 − A11 − A01 (observe that two of the
sides are tangents). q.e.d.

Let us now investigate chains of conjugate conics of length n = 6: From Lemma
3.4 we infer that D(λ) is, up to a factor, one of the following polynomials:

λ3 + 2λ2 + 2λ+ 1, λ3 − 2λ2 + 2λ− 1

The Taylor series of the roots of these polynomials are√
D(λ) = 1 + λ+

λ2

2
− λ4

8
+
λ5

8
− λ6

16
+

3λ8

128
+ . . .

and √
D(λ) = i(1− λ+

λ2

2
− λ4

8
− λ5

8
− λ6

16
+

3λ8

128
− . . .)

In both cases, for p = 2, k = 2p = 4, the Cayley determinant is c3 = 0, the
coefficient of λ3. Therefore, the corresponding closed chain of conjugate conics
of length n = 6 carries closed Poncelet quadrilaterals, and hence we have

Theorem 3.11. Each closed chain of conjugate conics of length n = 6 is a
miraculous chain: It carries closed Poncelet quadrilaterals and the sixth dual
of the first Poncelet quadrilateral is again the first Poncelet quadrilateral.

Remarks:

(a) Observe, that (G−1
0 G1)

6 = I is equivalent to (G−1
1 G0)

6 = I. In par-
ticular, no matter whether we start with a Poncelet quadrilateral with
vertices on G0 which is tangential to G1 or the other way round, we
always get a closed cycle of dual Poncelet quadrilaterals.

(b) The relation (G−1
0 G1)

6 = I can be rewritten as (G−1
0 G1G

−1
0 G1)

3 = I.
Then, since we have G1G

−1
0 G1 = G2, we get (G−1

0 G2)
3 = I. This means

that G0, G2, G4, and similarly G1, G3, G5, are closed chains of conjugate
conics of length 3 carrying Poncelet triangles which are entangled with
the Poncelet quadrilaterals sitting the full chain G0, G1, G2, G3, G4, G5 of
length 6.

Proof of Theorem 3.11. The calculations above show that each closed chain of
conjugate conics of length n = 6 carries closed Poncelet quadrilaterals. Thus,
we have only to prove that the sixth dual of the first Poncelet quadrilateral is
again the first Poncelet quadrilateral.

Let G0 and G1 be such that (G−1
0 G1)

6 = I. To simplify the notation let
A := G−1

0 G1, i.e., A
6 = I, and assume A3 ̸= I.
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Now, let x0 and x1 be two opposite vertices of a Poncelet quadrilateral Q on
G0 which is tangent to G1. By definition of A we get that the image Q′ of
Q under A3 is again a Poncelet quadrilateral on G0 which is tangent to G1,
namely the sixth dual of Q. Let y0 := A3x0 and y1 := A3x1 be two opposite
vertices of Q′. If y0 = x0 (or y0 = x1), then y1 = x1 (or y1 = x0) and we are
done. Otherwise, let g0 and g1 be the lines joining x0 & y0 and x1 & y1 respec-
tively, let h0 and h1 be the lines joining x0 &x1 and y0 & y1 respectively, and
let j0 and j1 be the lines joining x0 & y1 and x1 & y0 respectively (see Figure 12).

g0

g1

h0

h1

G0

G1

j0

j1

y1
y0

x0

x1

z′

Figure 12 The two conics with the two Poncelet quadrilateral.

By definition, A3y0 = x0, A
3y1 = x1, A

3 maps g0 to g0 and g1 to g1, A
3 maps h0

to h1 (and vice versa), and A3 maps j0 to j1 (and vice versa). Now, let z, z′, z′′

be the intersecting points of g0 & g1, h0 &h1, and j0 & j1 respectively. Then
A3z = z, A3z′ = z′, and A3z′ = z′ Hence, either A3 = I, which contradicts
our assumption, or x1 = y0 and x0 = y1, which shows that the quadrilaterals
Q and Q′ are identical. q.e.d.
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Like for triangles we can show that all miraculous chains of Poncelet quadri-
laterals are of fixed length:

Proposition 3.12. If G0, G1 induces a closed chain of conjugate conics of
length n which carries Poncelet quadilaterals, then n = 6.

Proof. By Lemma 3.4, D(λ) is of the form (λ + ε)(λ2 + 2λa + 1), where a =
cos(2πℓ/n), ε = ±1, and ℓ ∈ {1, 2, . . . , ⌊n−1

2 ⌋} satisfies{
(ℓ, n) = 1 if ε = 1

(ℓ, n/2) = 1 and ℓn/2 even if ε = −1.

Hence, by the Cayley criterion for quadrilaterals we get that a is a solution of
8a3 − 4εa2 − 10a + 5ε = 0, which implies that the only possible value for a is
ε/2. It follows that each miraculous chain of Poncelet quadrilaterals must be
of length n = 6. q.e.d.

Remark: By Lemma 3.4 together with the Cayley Criterion Theorem 3.3 one
can decide if for a given n a closed chain of conjugate conics of length n which
carries Poncelet k-gons exists or not. We have been looking for more such
miraculous chains, but could not find any other. It is conceivable that, apart
from the two cases we found in Theorem 3.6 and Theorem 3.11 respectively,
no other miraculous chains exist.
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Beyond: Integrable Billiards, Hyperelliptic Jacobians and Pencils of
Quadrics, Frontiers in Mathematics, Springer, 2011.

[4] Leopold Flatto, Poncelet’s Theorem, American Mathematical Society,
Providence, RI, 2009.

[5] Lorenz Halbeisen and Norbert Hungerbühler, A Simple Proof of
Poncelet’s Theorem (on the Occasion of Its Bicentennial), Amer. Math.
Monthly, vol. 122 (2015), no. 6, 537–551.

[6] Katharina Kusejko, Ovals in finite projective planes, Master Thesis,
Department of Mathematics, ETH Zürich, 2013.
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