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An elliptic configuration is a configuration with all its points on a cubic curve,
or more precisely, where all points are in the torsion group of an elliptic curve.
We investigate the existence of elliptic (3r4, 4r3) configurations for r → 5. In
particular, we construct elliptic ((p↑1)3) configurations for every prime p >7 and
show that there are (3r4, 4r3) configurations whenever 3r = p ↑1 for some prime
p > 7. Furthermore, we show that for every k → 2 there is an elliptic (9k4, 12k3)

configuration with a rotational symmetry of order 3, where we introduce a new
normal form for D3-symmetric elliptic curves.

1. Terminology

A (pω, lε ) configuration consists of p points and l lines in the real affine plane
such that each point belongs to ω lines and each line goes through ε points. If p = l

and consequently ω = ε , we just write (pω) instead of (pω, lε ). A configuration
is called an elliptic configuration if there is a cubic curve which passes through
all points of the configuration (see also the discussion of elliptic configurations in
[Grünbaum 2009, p. 247 ff.]). Examples of elliptic (124, 163) configurations can be
found in [Grünbaum 2009, p. 249], [Coxeter 1950, p. 440], and [Feld 1936] (where
one can find also an example of an elliptic (367, 843) configuration, and for an
elliptic (246, 483) configuration see [Halbeisen and Hungerbühler 2021]. Metelka
[1966] identified 8 elliptic (124, 163) configurations.

For a finite group G, a configuration is called G-symmetric if G is a subgroup of
the symmetry group of the configuration. There exists an extensive literature on con-
figurations with various types of symmetry (rotational, dihedral, point, chiral, floral):
see, e.g., [Berman 2004; 2006]. Finally, an elliptic G-symmetric configuration is a
configuration which is both elliptic and G-symmetric.
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Since a line intersects a cubic curve in at most 3 different points, the maximum
value for ε of an elliptic (pω, lε ) configuration is ε = 3, and therefore, natural
candidates for elliptic configurations are (3r3) configurations and (3r4, 4r3) con-
figurations for r → 1 (for (124, 163) configurations see, for example, [Gropp 1992;
Metelka 1985]). Grünbaum [2009, Open Problem 4, p. 293], asked for which r → 5
elliptic (3r4, 4r3) configurations exist.

Of particular interest are elliptic configurations with C3 or D3 symmetry. Here,
D3 is the dihedral group of the regular triangle, and C3 its subgroup of elements of
odd order. For G = D3 or G = C3 the number of lines of a G-symmetric configura-
tion must be a multiple of 3. Hence, since 3 | 4r implies 3 | r , the possible elliptic D3
or C3-symmetric (3r4, 4r3) configurations are (9k4, 12k3) configurations for k → 1.

After introducing a normal form of cubic curves which are D3-symmetric, we give
a construction of elliptic D3-symmetric (9k4, 12k3) configurations for every k → 2.
Finally, we show the existence of elliptic (3r4, 4r3) configurations for some r → 5.
The constructions of elliptic configurations are motivated by Schroeter’s ruler
construction of cubic curves (see [Halbeisen and Hungerbühler 2021]).

2. A D3-symmetric normal form for cubic curves

In this section, we will introduce a normal form of cubic curves which are D3-
symmetric and show that every nonsingular cubic curve can be transformed into
this form by a projective transformation. This normal form of cubic curves will be
used later in order to construct elliptic D3-symmetric configurations.

It is well known that every nonsingular cubic curve in the real projective plane
can be transformed into Weierstrass normal form:

y
2 = x

3 + ax
2 + bx .

Without loss of generality, we may require that the x-coordinate of an inflection
point is 1. In this case we get (see [Halbeisen and Hungerbühler 2019, Fact 2.3])

b ↓= 1 and a = b
2 ↑ 6b ↑ 3

4
. (1)

Now, by computing the polar conic at the point (0, 1, 0) in the projective extension
of the plane as well as the intersection points of the tangents at the inflections points,
we find the projective transformation




1 0 ↑2b

0
↔

3(b ↑ 1)/2 0
1 0 b ↑ 3





which transforms the affine curve y
2 = x

3 + ax
2 + bx (with a, b as in (1)) into the

curve
ϑD3 : x

3 ↑ 3xy
2 ↑ 3(b ↑ 3)(x

2 + y
2) + 4b

2(b ↑ 9) = 0.
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Figure 1. Elliptic D3-symmetric curves for b = 13 (left), and b = 8 (right).

To see that the latter curve is D3-symmetric, notice first that the curve is symmetric
with respect to the x-axis. To see that the curve is also symmetric with respect to
rotations about the origin with angle 2ε

3 , notice that if (x0, y0) is a point on the
curve ϑD3 , then also (

cos 2ε
3 sin 2ε

3

↑ sin 2ε
3 cos 2ε

3

) (
x0
y0

)

is a point on ϑD3 . Figure 1 shows two D3-symmetric curves ϑD3 .
Conic sections have a natural reflection symmetry along their axes. It is quite

natural to look at cubic curves in a D3-symmetric form. In this regard, we now
have:

Proposition 1. Every regular cubic curve can be brought, by a projective transfor-

mation, into the D3-symmetric normal form

ϑD3 : x
3 ↑ 3xy

2 ↑ 3(b ↑ 3)(x
2 + y

2) + 4b
2(b ↑ 9) = 0

with b ↗ ! \ {1}.

Remarks. Since the 3 points at infinity of an elliptic D3-symmetric curve are the
3 inflection points of the curve, the projective transformation which transforms a
curve in Weierstrass normal form into our D3-symmetric normal form is in general
not rational (e.g., in the case when the parameter b is rational).

Concerning the arithmetic on elliptic D3-symmetric curves it turns out that
the formulae to add or to double points are somewhat more involved than the
corresponding formulae for curves in Weierstrass normal form.
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3. Elliptic D3-symmetric (9k4, 12k3) configurations

In order to construct an elliptic D3-symmetric (9k4, 12k3) configuration for some
k → 2, we take an arbitrary D3-symmetric elliptic curve ϑ0 with neutral element
O = (0, 1, 0) and choose a point Q on ϑ0 of order 9k + 3. This can be achieved by
considering a p-periodic parametrization of the curve by the Weierstrass ϖ-function
and taking the point Q as the image of the parameter value pq

9k+3 for some q with
gcd(q, 9k + 3) = 1. See [Silverman 2009, Chapter VI, §3] for details. As a matter
of fact, we would like to mention that the points which are constructed in this
way are in general irrational. Mazur’s classification theorem [1977; 1978] limits
the possibility for elliptic configurations with rational points; see Figure 8 for an
example of a configuration which cannot have only rational points.

Notice that k → 2 is necessary, since k = 1 corresponds to the Hesse configuration
(94, 123) which can be realized in the complex projective plane as the set of inflection
points of an elliptic curve, but which has no realization with straight lines in the
Euclidean plane because of the Sylvester–Gallai theorem. In fact, our construction,
which we present below, works only for k → 2.

The group Gk on ϑ0, generated by the point Q, is isomorphic to the group
"/(9k + 3)". For 1 ↘ i ↘ 9k + 3, let

Pi := i ≃ Q := Q + Q + · · · + Q︸ ︷︷ ︸
i terms

,

where we denote the group operation on ϑ0 by +. We define the following three
sets of points:

S0 :={P1, . . . , P3k}, S1 :={P3k+2, . . . , P6k+1}, S2 :={P6k+3, . . . , P9k+2}.
Then each Sj (for j ↗ {0, 1, 2}) contains 3k pairwise distinct points, and since
the sets Sj are pairwise disjoint, the set S := S0 ⇐ S1 ⇐ S2 contains 9k pairwise
distinct points on the curve ϑ0. Notice that since the points P3k+1, P6k+2 of order
three, and P9k+3 are the only points of ϑ0 at infinity and none of them belongs
to S, all points of S belong to the real affine plane. The goal is now to construct
a D3-symmetric, (9k4, 12k3) configuration on the set of points S. Before we start
with the construction, let us introduce some notation.

• We identify the group Gk with the group "/(9k +3)", and for 1 ↘ u ↘ 9k +3,
we identify the point Pu with u ↗ Gk (i.e., with an element in "/(9k + 3)").
Similarly, we identify S with a subset of Gk .

• If 3 distinct points Pu, Pv, Pw are collinear (i.e., lie on a line), then the line
is denoted by [u, v, w]. Notice that by the group law of an elliptic curve, we
have that 3 distinct points Pu, Pv, Pw are collinear if and only if u + v + w ⇒
0 (mod 9k + 3). In other words, each line through 3 different points is of the
form [u, v, w] for some pairwise distinct u, v, w ↗ Gk .
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• If [u, v, w] is a line, then ↑[u, v, w] := [↑u, ↑v, ↑w] is the inverse line

of [u, v, w]. Notice that if [u, v, w] is a line in S (i.e., u, v, w ↗ S), then
↑[u, v, w] is a line in S with ↑[u, v, w] ↓= [u, v, w], namely the line mirrored
at the x-axis.

• For u ↗ Gk , we define ϱ(u) := u +(3k +1). Notice that if, for example, u ↗ S0,
then ϱ(u) ↗ S1 and ϱ2(u) := (ϱ ⇑ ϱ)(u) ↗ S2.

• If [u, v, w] is a line, then ϱ[u, v, w] := [ϱ(u), ϱ(v), ϱ(w)] is the correspond-
ing rotated line. Notice that if [u, v, w] is a line in S, then ϱ[u, v, w] and
ϱ2[u, v, w] are lines in S, where [u, v, w], ϱ[u, v, w], and ϱ2[u, v, w] are
pairwise distinct (but not necessarily disjoint) lines.

The following fact is an immediate consequence of the preceding definitions.

Fact 2. Any (9k4, 12k3) configuration on the point set S, which contains with any
line [u, v, w] also the lines ϱ[u, v, w] and ϱ2[u, v, w], is an elliptic C3-symmetric
(9k4, 12k3) configuration, where C3 is the cyclic group of order 3. If the configura-
tion contains in addition with any line [u, v, w] also the line ↑[u, v, w], then it is
an elliptic D3-symmetric configuration.

So, by Fact 2, to construct an elliptic D3-symmetric (9k4, 12k3) configuration it
suffices to find 2k lines [ui , vi , wi ] such that for 1 ↘ i ↘ 2k, the lines ±[ui , vi , wi ],
±ϱ[ui , vi , wi ], and ±ϱ2[ui , vi , wi ] are pairwise distinct. Before we start construct-
ing such lines, we show how we construct lines in S from “proto-lines” in S0:

For any u, v, w ↗ S, let

u0 := u (mod 3k + 1), v0 := v (mod 3k + 1), w0 := w (mod 3k + 1).

Then u0, v0, w0 ↗ S0 and if [u, v, w] is a line, then u0 +v0 +w0 ⇒ 0 (mod 3k + 1).
If, on the other hand, u, v, w ↗ S0 are such that u + v +w ⇒ 0 (mod 3k + 1), then
the triple (u, v, w) is called a proto-line in S0. Notice that we do not require that
the 3 points u, v, w of a proto-line (u, v, w) are pairwise distinct.

The following lemma will be crucial in the construction of (9k4, 12k3) configu-
rations.

Reduction lemma 3. If u, v, w ↗ S0 are such that (u, v, w) is a proto-line, then

there are ū, v̄, w̄ ↗ S such that u = ū
⇓, v = v̄⇓, w = w̄⇓

and [ū, v̄, w̄] is a line.

Proof. Let u, v, w ↗ S0 be such that (u, v, w) is a proto-line. Notice that since
u + v + w ⇒ 0 (mod 3k + 1) and 3 ⊋ 3k + 1, at most 2 of the 3 points u, v, w can
be equal. Without loss of generality assume u ↓= v. Then, for ū := u, v̄ := v, and
w̄ := w + (6k + 2), [ū, v̄, w̄] is a line. ↭

In order to construct an elliptic C3-symmetric (9k4, 12k3) configuration, by
Reduction lemma 3 and by rotating the lines with ϱ and ϱ2, respectively, it suffices
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to find a set L of 4k proto-lines in S0 such that each point of S0 belongs to exactly 4
proto-lines in L . In order to construct an elliptic D3-symmetric (9k4, 12k3) configu-
ration, we have to make sure that for each proto-line (u, v, w) in L , (↑u, ↑v, ↑w)

is also in L .

Theorem 4. For every integer k →2 there exists an elliptic D3-symmetric (9k4, 12k3)

configuration.

The proof of this theorem will be carried out in the following sections by explicit
constructions of the corresponding configurations. In particular, we will construct
elliptic (9k4, 12k3) configurations for k ⇒ 3 (mod 4), for k ⇒ 1 (mod 4), and for
k even, respectively.

3.1. D3-symmetric (9k4, 12k3) configurations for k → 3 (mod 4). Let k → 3 be
a positive integer with k ⇒ 3 (mod 4), and let nk := 3k + 1. The first step in the
construction of a (9k4, 12k3) configuration is the construction of 4k proto-lines.
For this, we start with a triple (a0, b0, c0) with a0 + b0 + c0 ⇒ 0 (mod nk), where
a0, b0, c0 are not necessarily nonzero. Then, we build successively the nk triples
(ai+1, bi+1, ci+1) := (ai ↑ 2, bi + 1, ci + 1) in "/nk". Among these triples, there
will be 2 triples which are not proto-lines because one of the numbers is 0. We then
replace these 2 triples by 2 proto-lines and construct additional k ↑ 1 proto-lines in
order to obtain 4k proto-lines.

We construct the 4k proto-lines as follows: let

m1 := k + 1
2

, m2 := nk ↑ m1,

and let

t1 :=
{

m1
2 if m1 ⇒ 2 (mod 4),

nk+m1
2 otherwise,

t2 := nk ↑ t1.

Since k ⇒ 3 (mod 4), we have that k + 1 ⇒ 0 (mod 4) and therefore, nk , m1 and
m2 are even. Moreover, since m1 ⇒ 0 or 2 (mod 4), and since nk ⇒ 2 (mod 4), we
have either m1 ⇒ 2 (mod 4) or nk + m1 ⇒ 2 (mod 4), which implies that t1 and t2
are both odd, in fact t1, t2 ⇒ 1 (mod 4).

Let S
≃
0 := S0 ⇐ {0} and define a sequence of triples ⇔(ai , bi , ci ) : 0 ↘ i < nk↖ in

S
≃
0 ↙ S

≃
0 ↙ S

≃
0 as follows: Let

(a0, b0, c0) := (t1, 0, t2)

and for 0 ↘ i < nk let

(ai , bi , ci ) := (t1 ↑ 2i, i, t2 + i) (mod nk).

Then, the sequence has the following properties:
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(a) For all 0 ↘ i < nk , ai + bi + ci ⇒ 0 (mod nk) and ai is odd. For the latter,
recall that t1 is odd and that nk is even.

(b) (at1, bt1, ct1) = (t2, t1, 0) (mod nk), e.g., at1 = t1 ↑ 2t1 = ↑t1 ⇒ t2 (mod nk).

(c) For all 0 ↘ i < j < nk we have {ai , bi , ci } ↓= {a j , b j , c j }.
(d) For all 0 ↘ i < nk we have

↑(ai , bi , ci ) = ↑(t1 ↑ 2i, i, t2 + i) = (t2 + 2i, ↑i, t1 ↑ i) = (at1↑i , ct1↑i , bt1↑i ).

Property (a) shows that every triple in the sequence is a proto-line in S
≃
0 . Property (c)

shows that the sequence contains exactly nk pairwise different proto-lines; let L
≃

be the set of these nk proto-lines. Property (d) shows that a proto-line (u, v, w) is
in L

≃ if and only if the proto-line ↑(u, v, w) is in L
≃.

Every even number 0 ↘ ς < nk appears in exactly 2 proto-lines in L
≃, and

every odd number 0 < ς < nk appears in exactly 4 proto-lines in L
≃. Now, we

remove the 2 proto-lines (t1, 0, t2) and (t2, t1, 0) from L
≃, and introduce the 2

proto-lines (m1, t2, t2) and (m2, t1, t1) to L
≃; the resulting set of proto-lines is

denoted L0. Notice that (m2, t1, t1)=↑(m1, t2, t2), that the 2 proto-lines (m1, t2, t2)

and (m2, t1, t1) are not in L
≃, and that every proto-line in L0 is a proto-line in S0.

In L0, every odd number 0 < ς < nk appears in exactly 4 proto-lines in L0, and
every even number 0 < ς < nk , except m1 and m2, appears in exactly 2 proto-lines
in L0, whereas m1 and m2 appear in exactly 3 proto-lines in L0.

Example 1. For k = 3 (i.e., nk = 10), we start with the triple (1, 0, 9) and get
successively the triples (9, 1, 0), (7, 2, 1), (5, 3, 2), (3, 4, 3), (1, 5, 4), (9, 6, 5),
(7, 7, 6), (5, 8, 7), (3, 9, 8). We now replace the 2 triples (1, 0, 9) and (9, 1, 0) by
the 2 proto-lines (2, 9, 9) and (8, 1, 1). This way, each odd number appears in a
proto-line exactly 4 times, and each even number, except 2 and 8, appears in a
proto-line exactly twice, whereas 2 and 8 appear 3 times. The additional k ↑ 1 = 2
proto-lines will then be (2, 4, 4) and (8, 6, 6).

In order to complete the construction of a (9k4, 12k3) configuration, we consider
the set Tk consisting of the nk/2 ↑ 1 even numbers 2, 4, . . . , nk ↑ 2. It remains to
find k ↑ 1 proto-lines in S0 with points in Tk , where every number in Tk except
m1 and m2 appears in exactly 2 proto-lines, whereas m1 and m2 appear in exactly
1 proto-line. Together with the nk = 3k + 1 proto-lines of L0, this gives us 4k

proto-lines, and after extending them to lines of S by Reduction lemma 3 and by
rotating them with ϱ and ϱ2, we finally obtain 12k lines. For the remaining k ↑ 1
proto-lines with points in Tk , by trial and error we have found the following pattern,
which is obtained in the following way: First, we write the points of Tk in two
rows, where the first row contains the numbers nk ↑ 2 to (nk ↑ 2)/2 + 1 in reverse
order, and the second row contains the numbers 2 to (nk ↑ 2)/2 in the natural order.
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Below the numbers of these two rows, we write • and ⇑ for the 3 points of the
proto-lines, where • denotes a number from the second row, and ⇑ denotes a number
from the first row. Finally, •• means the same number is listed twice. The following
diagram gives an example of 3 proto-lines for k = 7 (i.e., nk = 22), according to
the construction described above:

20 18 16 14 12
2 4 6 8 10
• • ⇑
⇑ ⇑ •

•• ⇑

The first proto-line is (2, 6, 14), the second is (20, 16, 8)=↑(2, 6, 14), and the third
is (4, 4, 14). Notice that ↑(u, v, w) is obtained from (u, v, w) by exchanging •
and ⇑. Now, instead of writing both proto-lines (u, v, w) and ↑(u, v, w), we just
write the one which uses the greater number of •’s — having in mind that each
proto-line (u, v, w) represents also the proto-line ↑(u, v, w). This way, we just
have to find k↑1

2 proto-lines. The following diagram illustrates the 11 proto-lines
for k = 23 (i.e., nk = 70), given in two parts:

68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
• ••

• ••
• ••

• ••
• ••

• ••
• • ⇑

• • ⇑
• • ⇑

•• ⇑
• • ⇑

First, notice that the proto-lines given in the diagram contain only even numbers
and are therefore different from the proto-lines in L0. Furthermore, we see that
each point, except the points 12 and 58, appears in exactly 2 proto-lines, whereas
the points 12 and 58 appear in exactly 1 proto-line. Notice that for k = 23, m1 =
k+1

2 = 12 and m2 = nk ↑ m1 = 58.
Now, we give a more formal construction of the remaining k↑1

2 proto-lines: Let
ñk := nk/2. The k+1

4 proto-lines in the first part are

(2 + 4i, (ñk ↑ 1) ↑ 2i, (ñk ↑ 1) ↑ 2i) where 0 ↘ i ↘ k↑3
4 .

In particular, for i = 0 we obtain (2, ñk ↑ 1, ñk ↑ 1), and for i = k↑3
4 we obtain

(k ↑1, k +1, k +1) (notice that 2+4 · k↑3
4 = k ↑1 and

( 3k+1
2 ↑1

)
↑2 · k↑3

4 = k +1).
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Furthermore, the k↑3
4 proto-lines in the second part are

(2 + 2i, (k ↑ 3) ↑ 4i, ↑(k ↑ 1) + 2i) where 0 ↘ i ↘ k↑7
4 .

In particular, for i = 0 we obtain (2, k ↑ 3, ↑(k ↑ 1)), and for i = k↑7
4 we obtain(

k↑3
2 , 4, ↑ k+5

2

)
. Notice 2+2· k↑7

4 = k↑3
2 , (k↑3)↑4· k↑7

4 =4, and ↑(k↑1)+2· k↑7
4 =

↑ k+5
2 . Now, since k↑3

2 + 2 = m1 and ↑
(

k+5
2 ↑ 2

)
= m2, we see that the only

numbers which appear in exactly 1 proto-line are m1 and m2.

Example 2. We illustrate the construction described above for the parameter k = 3.
This leads to an elliptic D3-symmetric (274, 363) configuration. The underlying
group is "30 on ϑ0. We obtain:

• k = 3, nk = 10, m1 = 2, m2 = 8, t1 = 1, t2 = 9.
• The proto-lines in L

≃ given in Example 1 are

(1, 0, 9), (9, 1, 0), (7, 2, 1), (5, 3, 2), (3, 4, 3),

(1, 5, 4), (9, 6, 5), (7, 7, 6), 5, 8, 7), (3, 9, 8).

• Remove (1, 0, 9) and (9, 1, 0), and introduce (2, 9, 9) and (8, 1, 1). This gives
us the 10 proto-lines of L0.

• The diagram, which yields the additional k↑1
2 = 1 line consists just of a single

line:
8 6
2 4
• ••

This gives us the lines (2, 4, 4) and (8, 6, 6).
• Together with the 10 proto-lines in L0, we have now 12 proto-lines which we

extend to proper lines in S and rotate them.

Observe that depending on how we extend the proto-lines to proper lines, and
depending on the choice of the generator of "30, we obtain different resulting
configurations. One version is shown in Figure 2.

3.2. D3-symmetric (9k4, 12k3) configurations for k→1(mod 4). Let k → 3 be a
positive integer with k ⇒ 1 (mod 4). Furthermore, let nk := 3k+1 and let m := nk/2.
Notice that since nk ⇒ 0 (mod 4), m is even.

As above, let S
≃
0 := S0 ⇐ {0} and define the following sequence of triples

⇔(ai , bi , ci ) : 0 ↘ i < nk↖ in S
≃
0 ↙ S

≃
0 ↙ S

≃
0 : Let

(a0, b0, c0) := (0, nk ↑ 1, 1) and (a1, b1, c1) := (2, nk ↑ 1, nk ↑ 1),

and for all 0 ↘ i < nk ↑ 2 let

(ai+2, bi+2, ci+2) := (ai + 4, bi ↑ 2, ci ↑ 2) (mod nk).
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Figure 2. An elliptic D3-symmetric (274, 363) configuration.

Then, the sequence has the following properties:

(a) For all 0 ↘ i < nk , ai + bi + ci ⇒ 0 (mod nk), ai is even, and bi and ci are
both odd.

(b) (am, bm, cm) = (0, m ↑ 1, m + 1).

(c) For all 0 ↘ i < j < nk , {ai , bi , ci } ↓= {a j , b j , c j }.
(d) For all s ↗ "/nk" we have ↑(as, bs, cs) = (a↑s, b↑s, c↑s).

Property (a) shows that every triple in the sequence is a proto-line in S
≃
0 . Property (c)

shows that the sequence contains exactly nk pairwise different proto-lines; let L
≃

be the set of these nk proto-lines. Property (d) shows that a proto-line (u, v, w) is
in L

≃ if and only if the proto-line ↑(u, v, w) is in L
≃.

Every even number 0 ↘ ς < nk appears in exactly 2 proto-lines in L
≃, and every

odd number 0 < ς < nk appears in exactly 4 proto-lines in L
≃. Now, we remove
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the 2 proto-lines (0, nk ↑ 1, 1) and (0, m ↑ 1, m + 1) from L
≃, and introduce the 2

proto-lines (m, nk ↑ 1, m + 1) and (m, 1, m ↑ 1) to L
≃; the resulting set of proto-

lines is denoted L0. Notice that (m, nk ↑ 1, m + 1) = ↑(m, 1, m ↑ 1), that the
2 proto-lines (m, nk ↑ 1, m + 1) and (m, 1, m ↑ 1) are not in L

≃, and that every
proto-line in L0 is a proto-line in S0. In L0, every odd number 0 < ς < nk appears
in exactly 4 proto-lines in L0, and every even number 0 ↘ ς < nk , except m, appears
in exactly 2 proto-lines in L0, whereas m appears in exactly 4 proto-lines in L0.

In order to complete the construction of a (9k4, 12k3) configuration, we consider
the set Tk consisting of the nk/2 ↑ 1 even numbers 2, 4, . . . , nk ↑ 2. It remains to
find k ↑ 1 proto-lines in S0 with points in Tk , where every number in Tk except m

appears in exactly 2 proto-lines, whereas m does not appear in any proto-line.
For the construction of the remaining k ↑ 1 proto-lines with points in Tk , by trial

and error we have found again a pattern, which is obtained in the following way:
As above, we write just the proto-line with the greater number of •’s — having in
mind that each proto-line (u, v, w) represents also the proto-line ↑(u, v, w). This
way, we just have to find k↑1

2 proto-lines. The following diagram illustrates the
12 proto-lines for k = 25 (i.e., nk = 76), given in two parts:

74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
38

• ••
• ••

• ••
• ••

• ••
• ••

• • ⇑
• • ⇑

• • ⇑
• • ⇑

• • ⇑
• • ⇑

First, notice that the proto-lines given in the diagram are different from the
proto-lines constructed above. Furthermore, we see that each point, except the
point 38, appears in exactly 2 proto-lines, whereas the point 38 does not appear in
a proto-line. Notice that for k = 25, m = 38.

Now, we give a more formal construction of the remaining k↑1
2 proto-lines: the

k↑1
4 proto-lines in the first part are

(4 + 4i, (m ↑ 2) ↑ 2i, (m ↑ 2) ↑ 2i) where 0 ↘ i ↘ k↑5
4 .

In particular, for i = 0 we obtain (4, m ↑ 2, m ↑ 2), and for i = k↑5
4 we obtain

(k ↑ 1, k + 1, k + 1) (recall that m = 3k+1
2 ). Furthermore, the k↑1

4 proto-lines in the
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second part are

(2 + 2i, (k ↑ 3) ↑ 4i, ↑(k ↑ 1) + 2i) where 0 ↘ i ↘ k↑5
4 .

In particular, for i = 0 we obtain (2, k ↑ 3, ↑(k ↑ 1)), and for i = k↑5
4 we obtain(

k↑1
2 , 2, ↑ k+3

2

)
. Notice that the only number which does not appear in a proto-line

is m, as required.

Example 3. We illustrate this construction for the parameter k = 5. This leads
to an elliptic D3-symmetric (454, 603) configuration. The construction gives the
following:

• k = 5, nk = 16, m = 8.
• The proto-lines in L

≃ are

(0, 15, 1), (2, 15, 15), (4, 13, 15), (6, 13, 13), (8, 11, 13),

(10, 11, 11), (12, 9, 11), (14, 9, 9), (0, 7, 9), (2, 7, 7),

(4, 5, 7), (6, 5, 5), (8, 3, 5), (10, 3, 3), (12, 1, 3), (14, 1, 1)

• Remove (0, 15, 1) and (0, 7, 9) (i.e., the 2 triples which contain 0), and intro-
duce (8, 15, 9) and (8, 1, 7). This gives us the 16 proto-lines of L0.

• The diagram, which gives us additional k↑1
2 = 2 lines consists of just 2 lines, 1

line in each part:
14 12 10

2 4 6
8

• ••
•• ⇑

This gives us the k ↑1 = 4 lines (4, 6, 6), (12, 10, 10), (2, 2, 12), (14, 14, 4).
• Together with the 16 proto-lines in L0, we have now 20 proto-lines which we

extend to proper lines in S and rotate them.

Again, depending on how we extend the proto-lines to proper lines, and depending
on the choice of the generator of "48, we obtain different resulting configurations.
One version is shown in Figure 3.

3.3. D3-symmetric (9k4, 12k3) configurations for k even. Let k → 2 be an even
integer and let nk := 3k + 1. Notice that nk is odd.

As above, let S
≃
0 := S0 ⇐ {0} and define a sequence of triples ⇔(ai , bi , ci ) : i ↗ "↖

in S
≃
0 ↙ S

≃
0 ↙ S

≃
0 as follows: Let (a0, b0, c0) := (0, 0, 0) and for all i ↗ " let

(ai+1, bi+1, ci+1) := (ai ↑ 2, bi + 1, ci + 1).

Then, the sequence has the following properties:

(a) For all i ↗ ", ai + bi + ci ⇒ 0 (mod nk), and bi = ci .
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Figure 3. An elliptic D3-symmetric (454, 603) configuration. For
this figure we have chosen the generator 1 in "48.

(b) For t := 3k

2 we have (at , bt , ct) = (1, t, t).

(c) For all i ↗ ", (ai+nk
, bi+nk

, ci+nk
) = (ai , bi , ci ), and for all 0 < s < nk ,

{ai+s, bi+s, ci+s} ↓= {ai , bi , ci }.
(d) In "/nk", for t := 3k

2 and for all s ↗ " we have

↑(at+s, bs, cs) = (at↑s+1, bt↑s+1, ct↑s+1).

Property (a) shows that every triple in the sequence is a proto-line in S
≃
0 . Property (c)

shows that the sequence contains exactly nk pairwise different proto-lines, including
the proto-line (0, 0, 0). Now, we remove the proto-line (0, 0, 0) and let L0 be the
set of the remaining 3k proto-lines. Property (d) shows that a proto-line (u, v, w)

is in L0 if and only if the proto-line ↑(u, v, w) is in L0. Furthermore, notice that
every number 0 < ς < nk appears in exactly 3 proto-lines in L0.
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For the construction of the remaining k proto-lines in S0, we will again visualize
the argument. As above, we write just the proto-line with the greater number
of •’s — having in mind that each proto-line (u, v, w) represents also the proto-
line ↑(u, v, w). This way, we just have to find k

2 proto-lines. In order to clearly
show the structure of the construction in the general proof, we omit the least point
of a proto-line and write the number of the least point as an index to the other 2
points of the proto-line. For example, for k = 4 (i.e., nk = 13) and the proto-line
(1, 3, 9) we will write

12 11 10 9 8 7
1 2 3 4 5 6

•1 ⇑1

instead of
12 11 10 9 8 7
1 2 3 4 5 6
• • ⇑

This way, we can write different proto-lines in the same row without ambiguity.
Later, we will omit the columns with points that appear as indices, which makes
the tables less wide. For example, for k = 8 (i.e., nk = 25) the following diagram
represents the 3 proto-lines (1, 7, 17), (2, 9, 14), and (4, 6, 15):

24 23 22 21 20 19 18 17 16 15 14 13
1 2 3 4 5 6 7 8 9 10 11 12

•4 •1 ⇑1 •2 ⇑4 ⇑2

We first consider the cases when k = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and then
we consider the cases when k → 22, where we will consider the four cases k ⇒
0, 2, 4, 6 (mod 8) separately.

The following diagrams show the k

2 proto-lines for k = 2, 4, . . . , 18, 20 (where
we do not write the points which appear as indices):

5 4
2 3
•1 ⇑1

10 9 8 7
3 4 5 6
•1 ⇑1 •2 •2

15 14 13 12 11 10
4 5 6 7 8 9
•1 ⇑1 •2 •3 ⇑2 •3

k = 2 k = 4 k = 6

20 19 18 17 16 15 14 13
5 6 7 8 9 10 11 12
•4 •2 ⇑2 ⇑4

•3 ⇑3 •1 ⇑1
k = 8

25 24 23 22 21 20 19 18 17 16
6 7 8 9 10 11 12 13 14 15
•4 ⇑4 •2 ⇑2

•1 ⇑1 •5 •3 ⇑5 ⇑3
k = 10
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30 29 28 27 26 25 24 23 22 21 20 19
7 8 9 10 11 12 13 14 15 16 17 18

•6 •4 •2 ⇑2 ⇑4 ⇑6
•3 •1 ⇑1 ⇑3 •5 •5

k = 12

35 34 33 32 31 30 29 28 27 26 25 24 23 22
8 9 10 11 12 13 14 15 16 17 18 19 20 21
•6 •4 •2 ⇑2 ⇑4 ⇑6

•7 •5 •1 ⇑1 ⇑7 •3 ⇑5 •3
k = 14

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

•8 •6 •4 •2 ⇑2 ⇑4 ⇑6 ⇑8
•7 •3 •5 ⇑7 ⇑3 •1 ⇑1 ⇑5

k = 16

45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
•8 •6 •4 •2 ⇑2 ⇑4 ⇑6 ⇑8

•9 •3 •7 •5 ⇑3 ⇑9 •1 ⇑1 ⇑5 ⇑7
k = 18

50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
•10 •8 •6 •4 •2 ⇑2 ⇑4 ⇑6 ⇑8 ⇑10

•9 •5 •3 •7 ⇑9 ⇑3 ⇑5 •1 ⇑1 •7

k = 20

Notice that in the diagrams above, in the case when k ⇒ 4, 6 (mod 8), there is
always a single proto-line which contains just points from the second row. In fact,
this will always be the case. Another feature of the diagrams above is that all the
numbers 1, . . . , k

2 appear as indices — this will also always be the case.
As mentioned, for k → 20 we will consider the four cases k ⇒ 0, 2, 4, 6 (mod 8)

separately. However, the structure of the proto-lines consisting only of even numbers
is always the same. This structure is illustrated by the following diagram. In the
diagram, u denotes the largest even number which is less than or equal to k

2 (i.e., u

is either k

2 or k

2 ↑ 1), M := k+u+2
2 , and N := k

2 + 1:

. . . N N + 1 . . . M ↑ 2 M ↑ 1 M M + 1 M + 2 . . . N + u ↑ 1 N + u . . .

•2 ⇑2
•4 ⇑4

. . . . . .

•u↑2 ⇑u↑2
•u ⇑u
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We will call these u

2 proto-lines the even block. Notice that the structure of the
even block already appears for k = 14, 16, 18.

In order to complete the proof of Theorem 4, we have to construct the remaining
k

2 ↑ u

2 proto-lines which consist only of odd numbers, the so-called odd block. The
following four diagrams show the structure of these odd blocks for k → 22.

The structure of the odd block for k → 24 and k ⇒ 0 (mod 8). Let now k ⇒ 0 (mod 8)

with k → 24. Then u = k

2 , M = 3k

4 + 1, N = k

2 + 1, and N +u = k+1. Furthermore,
let v := k

2 ↑ 1 and w := k

4 ↑ 1; then M + v = 5k

4 . Notice that v and w are both odd.
The following diagram illustrates the construction of the odd block:

. . . M . . . k + 2 k + 3 k + 4 . . . 9k+8
8

9k+16
8 . . . 5k↑4

4
5k

4
5k+4

4
5k+8

4 . . .

•v •w ⇑v ⇑w

•v↑2
•v↑4

•w+2

•w↑2
•3 ⇑3

. . . 11k↑8
8

11k

8
11k+8

8
11k+16

8 . . . 3k↑2
2

3k

2

⇑v↑2
⇑v↑4

⇑w+2
•1 ⇑1

⇑w↑2

Notice that the odd block fits well with the even block: For example, the number M,
which was missing in the even block, appears in the proto-line (v, M, ↑(M + v)

(recall that M + v = 5k

4 ). Furthermore, the number N + u + 1 = k + 2, which is
the least number which is bigger than the maximum of the numbers in the even
block, appears in the proto-line

(
w, k + 2, ↑

( 5k

4 + 1
))

. The other numbers of the
odd block are covered by the proto-lines with least number v ↑2, v ↑4, . . . , w +2,
w ↑ 2, . . . , 3, 1, where the proto-line

(
1,

11k

8
, ↑ 11k + 8

8

)

covers the gap between the proto-lines
(

w + 2,
9k + 8

8
, ↑11k + 16

8

)
and

(
w ↑ 2,

9k + 16
8

, ↑11k ↑ 8
8

)
.

The structure of the odd block for k → 26 and k ⇒ 2 (mod 8). For k ⇒ 2 (mod 8)

with k → 26, let u = k

2 ↑ 1, M = 3k+2
4 , N = k

2 + 1, and N + u = k. Furthermore,
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Figure 4. An elliptic D3-symmetric (184, 243) configuration.

let v := k

2 and w := k↑6
4 ; then M + v = 5k+2

4 . The following diagram illustrates the
construction of the odd block:

. . . M . . . k+1 k+2 k+3 . . . 9k+6
8

9k+14
8 . . . 5k↑6

4
5k↑2

4
•v •w •v↑2 •v↑4 •w+2 •w↑2 •3 ⇑w

5k+2
4

5k+6
4 . . . 11k↑14

8
11k↑6

8
11k+2

8
11k+10

8 . . . 3k↑2
2

3k

2
⇑v ⇑3 ⇑w↑2 •1 ⇑1 ⇑w+2 ⇑v↑4 ⇑v↑2

The structure of the odd block for k → 20 and k ⇒ 4 (mod 8). For k ⇒ 4 (mod 8)

with k → 20 let u = k

2 , M = 3k+4
4 , N = k

2 + 1, and N + u = k + 1. Furthermore,
let v := k

2 ↑ 1 and w := k+8
4 ; then M + v = 5k

4 . The following diagram illustrates
the construction of the odd block:

. . . M . . . k + 2 k + 3 . . . 9k↑12
8

9k↑4
8 . . . 5k↑8

4
5k↑4

4
•v •v↑2 •v↑4 •w+2 •w↑2 •3 •w

5k

4
5k+4

4 . . . 11k↑4
8

11k+4
8

11k+12
8

11k+20
8 . . . 3k↑4

2
3k↑2

2
3k

2
⇑v ⇑3 ⇑w↑2 •1 ⇑1 ⇑w+2 ⇑v↑4 ⇑v↑2 •w
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The structure of the odd block for k → 22 and k ⇒ 6 (mod 8). For k ⇒ 6 (mod 8)

with k → 22 let u = k

2 ↑ 1, M = 3k+2
4 , N = k

2 + 1, and N + u = k. Furthermore,
let v := k

2 and w := k↑6
4 ; then M + v = 5k+2

4 . The following diagram illustrates the
construction of the odd block:

. . . M . . . k + 1 k + 2 . . . 9k↑6
8

9k+2
8

9k+10
8

9k+18
8 . . . 5k↑2

4
5k+2

4
•v •v↑2 •v↑4 •w+2 •1 ⇑1 •w↑2 •3 ⇑v

5k+6
4

5k+10
4 . . . 11k↑2

8
11k+6

8 . . . 3k↑4
2

3k↑2
2

3k

2
•w ⇑3 ⇑w↑2 ⇑w+2 ⇑v↑4 ⇑v↑2 •w

Now consider the case k = 2 which yields an elliptic D3-symmetric (184, 243)

configuration. Figure 4 shows one realization of the resulting configurations.

4. On elliptic (3r4, 4r3) configurations

In order to obtain an elliptic D3-symmetric (9k4, 12k3) configuration, it was suf-
ficient to construct 4k proto-lines in the 3k-element set S0. Thus, if all the proto-
lines we constructed were proper lines, then we would have an elliptic (3k4, 4k3)

configuration — but this is in general not the case.
However, there is a simple algorithm which gives us elliptic (3r4, 4r3) configu-

rations for infinitely many values of r . The algorithm is given in the proof of the
following proposition.

Proposition 5. For every prime p > 7, there is an elliptic ((p ↑ 1)3) configuration

and for every prime p > 7 with 3r = p↑1 ( for some r ), there is an elliptic (3r4, 4r3)

configuration.

Proof. Let p > 7 be a prime, let ϑ0 be an elliptic curve, and let P be a point on ϑ0
of order p ↑ 1. Furthermore, let #p be the Galois field of order p. In the same way
as above, we will construct the elliptic configurations in #p \ {0}.

First recall that for any prime p, the multiplicative group #p is cyclic, i.e., there
exists a generator g ↗ #p such that ord(g) = p ↑1. Before we start the construction,
let us prove the following claim.

Claim. If p > 7 is a prime, then the multiplicative group of #p has a generator g

such that g ↓⇒ ↑2, p↑1
2 (mod p).

Proof of Claim. If #p has a generator g such that g ↓⇒ ↑2, p↑1
2 (mod p), then we are

done. Now, assume that g = p↑1
2 is a generator. Then, for any n with 1 < n < p ↑1

and (n, p ↑ 1) = 1, g
n is also a generator. So, if we find two distinct n, m with

1 < n, m < p ↑1 and (n, p ↑1) = 1 = (m, p ↑1), then g, g
n, and g

m are pairwise
distinct generators and we have found a generator which satisfies the conditions in
the claim. It remains to show that for every prime p > 7 there are distinct n, m with
1<n, m < p↑1 such that (n, p↑1)=1= (m, p↑1), which is obviously the case. ↭
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Figure 5. The solid and the dashed lines form an elliptic D1-symmetric
(184, 243) configuration derived from "/19". The solid lines in the
set L0 alone are an elliptic D1-symmetric (183) configuration.

Let now p > 7 be a prime and let g be a generator of the multiplicative group of
#p with g ↓⇒ ↑2, p↑1

2 (mod p) and let

L0 := {(gn, g
n+1, ↑(gn + g

n+1)) : 0 ↘ n < p ↑ 1}.
Then L0 is a set of p ↑ 1 lines in #p \ {0}. To see this, notice that by the properties
of g, for all n we have g

n ↓= g
n+1 and that ↑(gn + g

n+1) ↗ {gn, g
n+1} would imply

that g ⇒ p↑1
2 (mod p) or g ⇒ ↑2 (mod p).

Now, with the p ↑ 1 lines in #p \ {0} and the point P on ϑ0 of order p ↑ 1, we
can easily construct a ((p ↑ 1)3) configuration with all its points on ϑ0.

Let us now assume that in addition to p > 7 we have that p ↑ 1 = 3r for
some r → 4, and let again g be a generator of the multiplicative group of #p with
g ↓⇒ ↑2, p↑1

2 (mod p). Let x := g
r and let y := 1 + x + x

2. Then, since x
3 = 1,

we have xy = y, which implies that x ⇒ 0 (mod p) or 1 + x + x
2 ⇒ 0 (mod p).

Since the former is impossible (recall that g is a generator of the multiplicative
group of #p), we have that 1 + x + x

2 ⇒ 0 (mod p), and since 1, x, x
2 are pairwise

distinct, this implies that (1, x, x
2) is a line in #p. Consequently,

L1 := {a · (1, x, x
2) : a ↗ #p \ {0}}

is an r-element set of lines in #p which is disjoint from L0. To see this, notice
that no element of L0 is of the form a · (1, x, x

2) for some a ↗ #p \ {0} and for
all a, b ↗#p\{0}, if {a, ax, ax

2}∝{b, bx, bx
2} ↓=⫅̸ then {a, ax, ax

2}={b, bx, bx
2}.
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Figure 6. The solid and the dashed lines form an elliptic D1-
symmetric (304, 403) configuration derived from "/31", the solid
lines alone are an elliptic D1-symmetric (303) configuration.

Thus, L0 ⇐ L1 is a 4r -element set of lines in #p \ {0} and together with the point P

on ϑ0 of order p ↑ 1, we can easily construct a (3r4, 4r3) configuration with all its
points on ϑ0. ↭

Example 4. We illustrate the construction of the previous proof for the cases r = 6,
i.e., we deal with the prime p = 3r + 1 = 19, where we have chosen the generator
g = 3 in the multiplicative group of #19. The set L0 contains the lines

(1, 3, 15), (3, 9, 7), (9, 8, 2), (8, 5, 6), (5, 15, 18), (15, 7, 16),

(7, 2, 10), (2, 6, 11), (6, 18, 14), (18, 16, 4), (16, 10, 12), (10, 11, 17),

(11, 14, 13), (14, 4, 1), (4, 12, 3), (12, 17, 9), (17, 13, 8), (13, 1, 5).

The set L1 adds the lines

(1, 7, 11), (2, 3, 14), (4, 6, 9), (5, 16, 17), (8, 12, 18), (10, 13, 15).

The resulting elliptic D1-symmetric (184, 243) configuration is shown in Figure 5
(compare to Figure 4).
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We also add the case r = 10, i.e., for the prime p = 3r + 1 = 31. Observe that
since 30 = 3r is not a multiple of 9, the (304, 403) configuration cannot be realized
by the methods from Section 3. We omit the list of points and refer directly to
Figure 6.

5. Elliptic configurations resulting from groups of the form "/2" ↑ "/r"

We conclude this paper by presenting some (3r4, 4r3) configurations which are
derived from groups of the form "/2"↙"/k" by similar methods. Here, the points
are again constructed by using the Weierstrass ϖ-function (see, e.g., [Coxeter 1950,
p 440]). In Figure 7 we realize the group "/2"↙"/8" on an elliptic curve consisting
of two components. There are 15 real points and the point O at infinity (0, 1, 0).
Using all real points the result is an elliptic D1-symmetric (154, 203) configuration.
Notice that such a configuration cannot be constructed by the methods presented in
Section 3 and Section 4.

Figure 8 shows an elliptic D3-symmetric (184, 243) configuration derived from
the group "/2" ↙ "/12". The group on the elliptic curve has 21 real points and 3
points at infinity. Using only 18 of the real points it is possible to realize a (184, 243)

configuration sitting on two components of the elliptic curve. Recall that we had a
(184, 243) configuration on a one component curve in Figure 4 and another one in
Figure 5. It is clear that the three (184, 243) configurations in Figure 8, Figure 4 and

(0, 1)(0, 2)

(0, 4)

(0, 7)(0, 6)

(0, 3)

(0, 5)

(1, 0) (1, 4)

(1, 6)
(1, 7)

(1, 1)
(1, 2)

(1, 3)

(1, 5)

Figure 7. Elliptic D1-symmetric (154, 203) configuration derived
from "/2" ↙ "/8"
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Figure 8. Elliptic D3-symmetric (184, 243) configuration derived
from "/2" ↙ "/12".

Figure 5 are not projectively isomorphic, since the respective cubic curves are not
projectively isomorphic. However, the configurations could still be combinatorially
isomorphic. But the Menger graphs (see [Coxeter 1949, p. 28]) of the three con-
figurations turn out to be nonisomorphic: the ranks of the corresponding adjacency
matrices are different. In general the question may be more delicate to settle as one
might have to look at the Levi graph (see [Levi 1942, p. 5]) of the configurations since
the Menger graphs of nonisomorphic configurations may be isomorphic (see [Cox-
eter 1950], [Grünbaum 2009, Section 1.4] and the open questions in Section 6).

For Figure 9 we started with the group "/2" ↙ "/11" with 21 real points and 1
point at inifinity. Here, an elliptic D1-symmetric (214, 283) configuration results.
Such a configuration cannot be constructed by the methods presented in Sections 3
and 4.

Our last example starts with the group "/2" ↙ "/13" with 25 real points on
the curve and 1 point at infinity. Omitting the real point corresponding to the
group element (1, 0) of order 2, we have 24 real points which carry an elliptic
D1-symmetric (244, 323) configuration, as shown in Figure 10. Such a configuration
cannot be constructed by the methods presented in Sections 3 and 4.
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(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 6)

(0, 7)

(0, 8)

(0, 9)

(0, 10)

(1, 0)

(1, 6)

(1, 7)

Figure 9. Elliptic D1-symmetric (214, 283) configuration derived
from "/2" ↙ "/11".

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 8)

(0, 7)

(0, 6)

(0, 9)

(0, 10)

(0, 11)

(0, 12)

(1, 0)

(1, 8)

(1, 5)

Figure 10. Elliptic D1-symmetric (244, 323) configuration derived
from "/2" ↙ "/13"
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6. Open problems

As always, with every solved problem, new questions arise. For example:

(1) For certain values of r , several of the presented methods can be used to produce
a (3r4, 4r3) configuration. Even within the methods there is some freedom (e.g.,
the choice of the generator of the respective group, or in the construction of the
proto-lines). Which of these configurations are combinatorially or projectively
isomorphic?

(2) Is it possible to generalize the methods we used for the construction of con-
figurations starting from groups of the form "/k" to groups of the form
"/2" ↙ "/k" to find other (3r4, 4r3) configurations?

(3) Can the configurations that we constructed also be geometrically realized
without the points lying on cubic curves? Are there realizations with other
symmetry types?
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