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COMMUNICATING HARMONIC PENCILS OF LINES

NORBERT HUNGERBUHLER and CLEMENS POHLE

Abstract. Suppose there are n harmonic pencils of lines given in the
plane. We are interested in the question whether certain triples of these lines
are concurrent or if triples of intersection points of these lines are collinear,
provided that we impose suitable conditions on the initial harmonic pencils.
Such conditions can be that certain of the given lines coincide, are concur-
rent or that certain intersection points are collinear. The study of these
questions for n = 2, 3,4 sheds light on some well known affine configurations
and provides new results in the projective setting. As applications, we will
formulate generalizations or stronger versions of the theorems of Pappus,
Desargues, Ceva and Menelaos. Notably, the generalized theorems of Ceva
and Menelaos suggest a new way to generalize the terms ‘collinearity’ and
‘concurrency’.

1. INTRODUCTION

Before we start, let us briefly fix some notation: Points will be denoted
by capital letters, lines by small letters. The intersection point of two lines
g and h is g X h, and A x B denotes the line trough A and B. The term
é—g is the quotient of the oriented lengths of the segments AB and C'D on

an oriented line. The cross-ratio of four collinear points A, B,C, D is

AC BD

CR(A,B;C,D) := °B DA
A harmonic quadruple of collinear points A, B, X,Y or concurrent lines
g, h,u,v will be denoted by (AB; XY') and (gh;uv), respectively: Y is the
harmonic conjugate of X with respect to A and B (see, e.g., [1]). Finally, we
denote by [ABC]| the signed area of a triangle ABC with respect to a given
orientation of the plane. In particular [ABC| = —[C'BA] (see Figure 16).

Suppose we are given points Aj, Ao, ..., A, in the projective plane and
each point A; carries a harmonic pencil of four lines which meet in A4;. In
general there will be 8n(n — 1) further intersection points of these lines. In-
teresting constellations concerning these lines and their points of intersection
are:
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e concurrent triples of lines,
e collinear triples of intersection points.

Of course, without any further conditions no such constellation will occur.
This changes if we let the n initial harmonic pencils of lines “communicate”
with each other. This means that we impose conditions of the following
kind:

e certain lines coincide,
e certain lines are concurrent,
e certain points of intersection are collinear.

Let us have a look at an example with two points Ay, As. Here we have the
following proposition, illustrated by Figure 1.

Proposition 1.1. Let A, As be two points in the projective plane and
(airao; birbia) harmonic pencils of lines at point A;, i € {1,2}. Then the
following holds: If three of the points

aip X ag, a1z X agy, bip X bar, b1z X bag
are collinear, then so are all four points.

Proof. The intersection points P,Q, X,Y of a harmonic pencil with a line
g are harmonic points. And vice versa, if four collinear harmonic points are
connected with a point A; or Ao, the connecting lines are a harmonic pencil.
Therefore the claim follows from the fact that the fourth harmonic line is
determined by the three others. This concludes the proof.

FicURE 1. The configuration in Proposition 1.1.

A nice special case of Proposition 1.1 occurs, when ay; = ag; = a (see
Figure 2):

Corollary 1.1. Let Ay, As be two points in the projective plane with a =
A1 x Ay, and (a, a;;bi1bi2) harmonic pencils of lines at point A;, i € {1,2}.
Then the triples of points

ai X az, bip X bar, b1z X by
a1 X a2, bi1 X b, b1z X by

are collinear.
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FiGure 2. Collinear intersection points of two communicat-
ing harmonic pencils (Corollary 1.1).

In Sections 2 and 3 we will illustrate the concept of communicating har-
monic pencils of lines with two examples which live in the affine plane.
There the harmonic pencils do not communicate in the above described
purely projective way. The idea is then to carry these two configurations
into the projective plane and to replace the affine conditions by projectively
invariant conditions. This will be done in Sections 4 and 5, respectively.
Finally, in Section 6, we will show how our results can be used to expand
some well-known theorems.

2. HARMONIC PENCILS IN AFFINE TRIANGLES

Let A1 As A3 be an affine triangle with sides a1, as, ag, where the notation
is such that A; ¢ a;. Let g; denote the inner angle bisectors of the triangle
and h; the outer angle bisectors in A;. Then (a;a;+1; gi+2hi+2) is a harmonic
pencil of lines for i € {1,2,3} (indices are taken cyclically). Obviously, the
following lines are concurrent.

(i) 91,92, 93: The intersection point is the center of the incircle of the
triangle),

(ii) gi, hit1, hito for i € {1,2,3}: The intersection points are the centers
of the excircles (see Figure 3).

In Section 4 we will replace the angle bisectors in the triangle by lines g;, h;
which form harmonic pencils together with the sides of the triangle. It will
turn out that in this purely projective setting (i) occurs if and only if one
of the concurrencies in (ii) occurs (see Theorem 4.1).

The configuration in the next section is less well-known.

3. HARMONIC PENCILS IN AFFINE COMPLETE QUADRILATERALS

This extremely rich configuration has first been described by Jakob Steiner
n [11]. We present the theorem translated from the French original, with a
few additional remarks in parentheses.

Theorem 3.1 (Jakob Steiner, 1827). For a complete quadrilateral with four
sides and six vertices there holds:
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FIGURE 3. Incircle and excircles in triangle A1 A As.

The four sides, taken in groups of three, form four triangles. Their
circumcircles pass through a single point M (the Miquel point, see [8],
9)).

The centers of these four circumcircles and M lie on a further circle.
The feet of the perpendiculars from M to the four sides of the
quadrilateral lie on a line s (the Simson-Wallace line), and M is
the only point with this property.

The orthocenters of the four triangles in (i) lie on a line c. (c is the
common radical axis of the three Thales circles over the diagonals
of the complete quadrilateral: Bodenmiller-Steiner Theorem, see [6,
p. 138]).

The lines s and c are parallel. c is the middle line between M and
s.
The midpoints of the three diagonals of the complete quadrilateral lie
on a line n (Gauf-Newton Theorem, see [10], [2], [3, p. 112-121]).
The line n is perpendicular to ¢ and s.

Each of the four triangles of the quadrilateral has an incircle and
three excircles which gives a total of sixteen circles. The centers Cy,
of these circles lie in groups of four on eight new circles.

The eight circles mentioned in (viii) can be decomposed into two
groups of four circles. The four circles in on group are orthogonal
to the four circles of the other group. In particular, the four centers
of the circles of both groups lie each on a line, and these two lines are
orthogonal. (And the four circles in one of the two groups meet in
two points on the line which carries the centers of the other group.)
The two perpendicular lines mentioned in (ix) meet in M.

We add the following observations to complete the picture and to focus
on the part of the constellation which is relevant for our purposes:
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Theorem 3.2. Let Ay, Aa, A3, Ay be the wvertices of a quadrilateral with
sides alp = A1 X AQ, ags3 = A2 X A3, azqg = Ag X A4, aq1 = A4 X Al, and let
As = a1o X asq, Ag = aos X aq1. Denote by g; and h; the inner and outer
angle bisectors in the points A;, i € {1,...,6} (see Figure 4). Then there
holds:

(xi) The following quintuples of points are collinear:

As, hi X hg, g1 Xgs, hzxha, g3xg2 (ongs)
Ag, h3xhg, g3xgs, hixha, g1xg2 (ongs)
As, g1 X hg, hi1xXga, g3xha, h3xgs (onhs)
Ag, g3 x hy, hzxgs, g1xh2, hixgz (onhg)

Stated differently: The sixteen centers Cy of the circles mentioned
in (viii) lie in groups of four on the angle bisectors of the complete
quadrilateral in the points Ay, As, ..., Ag: In each center Cy, three
of these angle bisectors meet.

(xii) If A;, Aj lie on a side of the complete quadrilateral, then there are
four of the centers Cj mentioned in (viii), say C,,Ck,, Clg, Chy,
such that A;, A;,Cy,,Cy, and A;, A;, Cy,, Cy, each lie on a circle.
This gives rise to 24 new circles: In each center Cy, three of the-
ses circles meet, together with two of the eight circles mentioned
in (viii).

(xiii) Each angle bisector carries two centers of the 24 new circles men-
tioned in (xii).

Proof.

(xi) It is clear from the construction, that the centers Cj, of the incircles
and excircles lie on the angle bisectors in the points Aj, Ao, ..., Ag:
See Figure 4.

(xii),(xiii) Since the two angle bisectors in each of the points Aj,..., Ag are

orthogonal, the 24 new circles are just Thales circles over two cen-

ters. See Figure 5, where the situation is illustrated for the segment

Ay, A5 and two centers C' and D. This completes the proof.

Tow sides of the quadrilateral meeting in A; form together with the an-
gle bisectors in this point a harmonic pencil of lines. According to Theo-
rem 3.2 (xi), groups of four of the intersection points of angle bisectors and
one of the points A; are collinear. In Section 5 we will consider this situation
where we replace the angle bisectors by harmonic lines.

4. HARMONIC PENCILS IN PROJECTIVE TRIANGLES

We now replace the angle bisectors in a triangle by lines such that in each
vertex a harmonic pencil of lines results. Each pair of these three harmonic
pencils shares a common line (a side of the triangle), and they are therefore
not completely independent. And indeed, certain intersection points of lines
turn out to be collinear.

Proposition 4.1. Let Ay, As, Ag be a triangle with sides a;, i € {1,2,3}
and such that A; ¢ ay. Through each vertex A; we choose two lines g;, h;
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F1GURE 5. The center C of the incircle of the triangle
Ay A3 As, the center D of the excircle opposite of its vertex
Ag, and the vertices Ao, A5 lie on a circle whose center M is
the midpoint of the segment C'D.
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such that (a;a;11; giv2hiv2) is a harmonic pencil of lines (indices are taken
cyclically). Then, there holds:

(i) The following triples of points are collinear:
on line u;:  Ai,  giv1 X git2, hiv1 X Rigo
on line vi:  Aiy  gi+1 X hiva,  git2 X hit1
fori e {1,2,3} (see the dashed lines in Figure 6).

(ii) The lines (a;a;11;uir2vi+2) are harmonic pencils.

Proof. (i): This follows directly by applying Corollary 1.1 to the three pairs
of points A;, Aj, i # j.

(ii): The harmonic pencil (ajas; hage) cuts the line hs in harmonic points,
i.e., the points

(a1 X h3,az x hg;he X hs, g2 X h3) = (az X h3,az X hg;uy X hs,v1 X hs)

are harmonic. But this implies that (azas;uiv1) is a harmonic pencil. The
remaining cases are analogous.
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FiGURE 6. Harmonic pencils in a triangle.

If we compare the situation in Section 2 of a triangle with angle bisectors
to the Proposition 4.1 above, we observe that here neither the lines g1, g2, g3
nor the lines g;, hit1, hito are concurrent in general. However, the next
theorem shows that one such concurrency already implies all other possible
concurrencies.

Theorem 4.1. Let Ay, Ag, A3 be a triangle with sides a;, i € {1,2,3} and
such that A; ¢ ay. Through each vertexr A; we choose two lines g;, h; such
that (a;ai+1; gi+2hiv2) is a harmonic pencil of lines (indices are taken cycli-
cally). Then we have:

(i) If the lines g1, g2, 93 are concurrent, then so are the triples of lines
Gi, Niv1, hite fori e {1,2,3}.
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(ii) Vice versa, if one of the triples g;, hit1, hivo is concurrent, then so
are the other two triples and the triple g1, g2, g3.
(iii) Each of the concurrencies in (i) and (ii) occurs if and only if
AlBg A231 A3B2
B3A2 BlAg BQAl

=1

where B; = a; X g; (see Figure 7).

FIGURE 7. Harmonic pencils in the vertices of a triangle.

Proof. (i) Let I be the intersection point of g1, 92,93, 12 = g1 X hy and
I3 = g1 X hg. We want to show that I15 = I13. Since (a;ai11; gi+2hi+2) are
harmonic pencils for i € {2,3}, we have

Al Arls
IBy, LB
Al B Aq1l13
IB, ~  IBy

Hence ‘14112%? = ‘141;—[3%? and therefore I;5 = I13. Thus, g1, ho, hg are concurrent.

The remaining cases are analogous.

(ii) This follows from (i) by exchanging the role of g; and h; in two of the
vertices A;.

(iii) This is Ceva’s Theorem.

5. HARMONIC PENCILS IN PROJECTIVE COMPLETE QUADRILATERALS

We consider a quadrilateral like in Section 3 and replace the angle bisec-
tors by lines which form together with the sides of the quadrilateral harmonic
pencils. Since neighboring pencils share a common side they are not com-
pletely independent, and certain intersection points of the lines turn out to
be collinear:
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Proposition 5.1. Let Ay, Ao, A3, Ay be the vertices of a quadrilateral with
sides a;(ip1) = Ai X Aip1 for i € {1,2,3,4} (where indices are taken cycli-
cally). The quadrilateral is completed with As = a12 X asq, Ag = aq1 X as3.
We assume that in each vertexr Aq, Ao, A3, Ay two lines g;, h; build together
with the sides a harmonic pencil (a(z‘—l)iaz‘(i+1)§gihi)- Then the following
triples of points are collinear:

As, g1 X hg, h1 X gy, Ag, g1 X ha, hi X ga,
As, g3 X ha, hs X go, Ag, g3 X hg, hs X g4,
As, g1 X ga, hi X hg, Ag, g1 X g2, hi1X ha,
As, go X g3, hs X hs, Ag, g3 X gs, hs X hy

(see the dashed lines in Figure 8).

Proof. This follows directly by applying Corollary 1.1 to neighboring pairs
of vertices of the quarilateral Ay, As, As, Ay.

F1GURE 8. Harmonic pencils in a quadrilateral.

Compared to the situation in Theorem 3.2, we observe that the four lines
which carry the quintuples of collinear intersection points each split up in
two lines (compare the dashed lines in Figures 4 and 8). One can move
e.g. g1 in Proposition 5.1 such that two of the split lines collapse. Then,
interestingly, not only one of the pairs of lines collapses, but all four pairs
collapse simultaneously:

Theorem 5.1. Let Ay, As, A3, Ay be the vertices of a quadrilateral with sides
aiir1) = Ai X Aigr for i € {1,2,3,4} (where indices are taken cyclically).
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The quadrilateral is completed with As = a12 X azs, Ag = aq1 X asg. Assume
that in each vertex Ay, As, As, Ay two lines g;, h; build together with the sides
a harmonic pencil (a(;_1y;@;it1); 9ihi). Finally, denote by () the following
four pairs of lines (see the dashed lines in Figure 8):

line ggl) A5, g1 X h4, h1 X g4 and line fgl) A5, gs X hg, h3 X gg

line 6(12) N A5, g1 X g4, hl X h4 and line 652) N A5, gz X gs, hg X h3

line Eg?)) N Aﬁ, g1 X hQ, h1 X g2 and line 6(23) N AG, gs X h4, h3 X g4

line £§4): Ag, g1 X g2, h1 X ho and line Kgl): Ag, g3 X g4, h3 X hy

Then, if the two lines of one of the pairs (D coincide, then the two lines of

all pairs coincide, and this is the case if and only if one of the following two
equivalent conditions holds:

4

. AiBi(i1)(i+2 AiBi(i11)(i+3

(i) H (+D(E+2) (+1)(+3)

=1
i=1 Bi(i+1)(i+2)Ai+1 Bi(i+1)(i+3)Ai+1

where Byji, = aij X gi (see Figure 10).
(i) A1Dy AsDs A3Dy AgDr 1
11 . . . —
D2A3 D3A4 D4sA; D1As

where Dl = glx(Ang4), D3 = ggX(AQXA4), D2 = gQX(Al XA3),
Dy = g4 x (A1 x A3) (see Figure 11).

Proof. According to Proposition 4.1(ii), the lines (a12a34;€§2)€§1)) and
(a12a34;€g)£gl)) are harmonic. Therefore, we have 41) = ﬂgl) if and only
if 6(12) = 6(22). The same argument yields that 5(13) = E;?’) if and only if
5(4) _ 6(4)
1 2"

Suppose now that 652) = 6(22). In order to show that this implies 654) = £;4)
we use the Theorem of Menelaos for the following triangles and transversal
lines:

e triangle A1 A4As with line as3:
AygAg A1Ay  AsAsz

® AgAr ApAs AzAy -t
e triangle AjAs5(g1 X g4) with line go:
@) Ailg1 ¥ g2) (91 xg4)(92 % 93) AsA> _
(91 % g2)(g1 x g94) (92 xg3)A5  AxAy
e triangle A4A5(g1 X g4) with line g3:
(3) (91 % 94)(93 X 9a) AaAs = As(g2xg3) _
(93 X 94) A4 A3As (92 % g3)(91 %X 94)
Multiplication of the equations (1)—(3) yields
(@) Ai(gr x g2) (91 x94)(g3 X g4) Asds _

(g1 x g2)(g1 X g4) (93 x g4)A4 AgA;
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Using Menelaos and (4) in the triangle A;(g1 X g4)A4 yields that the points

g1 X g2, g3 X g4, and Ag are collinear. Hence we have 654) = Egl) as claimed.

The same argument shows that 652) = 652) follows from 654) = féA‘).

Now we show that 552) = 652) is equivalent to condition (i) in the theorem.

Before we start, we set up some identities which hold in general, i.e., without
the hypothesis 652) = €g2)

following triangles:

. To this end, we apply Ceva’s Theorem to the

e triangle A1 AsA, with point g1 X gq4:
A1Biogs AsBzqn AsCy

(5) BisAs BanAs CuAy b
where Cy1 = a4 X £§2).
e triangle Ao As5As with point go X g3:
(6) AsBigz AsCaz A3Bzay 1.
Big3Ay  Ca3A3  BsgaAs
where Caog = as3 X ggz)'
Now we employ Menelaos once more as follows:
e triangle A; A5 A, with transversal line gs:
(7) A1Ay AsBss AyBia 1

AsAs BapAs BinAy
e triangle Ay A5 A4 with transversal line gs:
(8) A1Bias AsAs AsBuz _q
BiogAs A3zAy BuzA '
e triangle A5 AsAs with transversal line g;:
(9) AsAr AaBaz A3Bau 1
A1As  DBa31A3z B3y As '
e triangle As A5 A with transversal line g4:
(10) AsBiag AaBazy  AzAs _1
Bi24As Bz Az AyAs '
The product of the six equations (5)—(10) simplifies to
CA1As AgCoz AsAs  AyCy _1
AsAs Ca3As AsAy Cudy ’
where ( is the expression (i) in the theorem. Hence, ( = 1 if and only if
(11) A1As AyChs AsAs AyCy _1
AsAs C3As AsAy Cudy '
So, we are done if we can show that (11) is equivalent to the condition
552) = 552). Indeed, define the points Chy = 552) X (Ag x Ay) and Cy; =
€§2) X (Ag x Ay) (see Figure 9). We use again the Theorem of Menelaos as
follows:

e triangle A1 A5A, with transversal line Egz):

Aids A0y Al
AsAy ClAy CuAy '

(12)
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(2)

FIGURE 9. Equivalence of (11) and 652) =4 .

e triangle As A3 A4 with transversal line EéQ):

Aoy AsAs AuChy
CasAs  AsA; ChyAy '

The product of (12) and (13) is

A1As AxChs AzAs AyCy A CYy _ AyCiy _
AsAy CaAs AsAy CuAy ClAs ChzAs

(13)

Hence, equation (11) holds if and only if

ClAs ChsAs ’

or equivalently
AsCly _ AxCyy
Chds ~ Oy’

But this is indeed true if and only if 652) = Eg), as claimed.
It remains to show that the conditions (i) and (ii) in the theorem are
equivalent. We use again Menelaos (see Figure 11):

e triangle A4A5 A5 with transversal line g;:
AyD1  A3Baz1i AsBsu

14 . . =—1.
(14) DAy Ba31 A3 Bzsi Ay
e triangle A A3A4 with transversal line go:
(15) A1Dy A3Bsiz A4Bua _
DyAs  BsipAy  Bai12Aq '
e triangle As A4 A1 with transversal line gs:
A>,Ds AuB AB
(16) 2Ds A4Bus A1Bias

D3Ay BysA; BiasAy
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FIGURE 10. Lines and points in Theorem 5.1(i).

e triangle A3A; A with transversal line g4:
A3Dy A1Biay AsBozy

17 . . = —1.
(17 DyAy BigsAs BazsAs
The product of (14)—(17) is

AyDy A1Dy AsDs AsDy 1

DAy DyA; DsAy DiAr
which shows that indeed (i) and (ii) in the theorem are equivalent.
Remark. Note that if we fix three of the four lines g1, ..., g4, then there

exists a unique position for the fourth line such that the criterion (ii) in
Theorem 5.1 is satisfied.

6. BROADENING CLASSICAL RESULTS

Condition (ii) in Theorem 5.1 is particularly interesting as it can be
framed in various ways that give further insights to specific constellations.
First, we can derive a statement about quadruples of points with the same
cross-ratio:

Corollary 6.1. Let Ay, Ao, A3, Ay and B1, Bs, Bs, By be two quadruples of
collinear points. Then the following statements are equivalent:

(i) (Al X Bl) X (AQ X Bg), (Ag X Bg) X (A4 X B4), (Al X Bg) X (A4 X
Bg), (Al XB4) X (Ag XBQ), (AQ XBg) X (A4 XBl), (A2 ><B4) X (Ag XB1)
are collinear.

(ii) (Al X Bl) X (Ag X B3), (A2 X BQ) X (A4 X B4), (Al X Bg) X (A4 X
B3), (Al XB4) X (AQ XBg), (AQ XBl) X (Ag XB4), (Ag XBQ) X (A4 XBl)
are collinear.

(111) (A1 X Bl) X (A4 X B4)7 <A2 X BQ) X (Ag X Bg), (A1 X BQ) X (A3 X
B4), (A1 XBg) X (A2 ><B4)7 (A2 XBl) X (A4 XB3), (Ag XBl) X (A4 XBQ)
are collinear.
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FIGURE 11. Lines and points in Theorem 5.1(ii).

(iV) (Al X Bg) X (AQ X Bl), (A2 X Bg) X (Ag X BQ), (Ag X B4) X (A4 X
Bg), (A4XBl)X(A1><B4), (A1 XB3)X(A3><Bl), (AQXB4)><(A4XBQ)
are collinear.

(v) CR(A1, Ag; Az, Ay) = CR(B1, Bo; Bs, By)

Proof. By applying Theorem 5.1 (ii) to the quadrilateral A;B;AsBy and
the lines g1 = A1 X Bg, g = Bl X A3, gs = A2 X B4, g4 = 32 X A4 we get
that

A1As B1Bs AsA; ByBj 1

AsAy ByBs A4A1 BsBy
or equivalently, CR(A, Ag; A3, Ay) = CR(Bq, By; B3, By), is equivalent to
the collinearity of the points

(Al X Bl) X (AQ X Bz), (Al X Bg) X (A4 X Bg), (A2 X B4) X (Ag X Bl)

(18)

(see pair £ in Theorem 5.1).
Analogously, CR(As, A4; A1, As) = CR(Bs, By; By, B2) is equivalent to
the collinearity of the points

(A3 x B3) x (A4 x By), (A3 x By) x (A x By), (A4 x By) x (A1 X Bs),

CR(A1, Ag; Ay, A3) = CR(B1, Be; By, Bs) is equivalent to the collinearity of
the points

(Al X Bl) X (A2 X Bg), (A1 X B4) X (A3 X BQ), (A2 X Bg) X (A4 X Bl)

and CR(As, A4; Ao, A1) = CR(Bs3, By; Ba, By) is equivalent to the collinear-
ity of the points

(A3 X Bg) X (A4 X B4), (A3 X Bg) X (A1 X B4)7 (A4 X Bl) X (AQ X Bg)
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Since all the cross-ratio equations are in fact equivalent and because the
triples of points have sufficiently many common points, it follows that

(19) CR(A1, Az; A3, Ay) = CR(B1, By; B3, By)
is equivalent to the collinearity of all those points, which proves the equiva-
lence of (i) and (v).

Now (ii), (iii) and (iv) follow by noting that

(20) CR(A1, As; Az, Ay) = CR(By, Bs; Ba, Ba),
(21) CR(A1, Ay; Az, A3) = CR(B1, By; Ba, B3)
and

(22) CR(A1, Ag; Az, Ay) = CR(B2, By; By, B3)

are all equivalent to (19) and taking the corresponding intersection points.
This concludes the proof.

Note that the ordinary Pappus Theorem follows from Corollary 6.1 by let-
ting A; and As as well as By and Bj coincide: This implies immediately that
CR(A1, Ag; A3, Ay) = 0 = CR(By, Ba; B3, By) hence (iv) in Corollary 6.1
will always be true regardless of the constellation of Ay, Ao, Ay, B, By, By.

Interestingly, Corollary 6.1 (iv) is a particularly nice generalization of Pap-
pus’ Theorem with four points on each of two lines:

Corollary 6.2. Let Aq,...,A4 and By, ..., By be collinear points, respec-
tively. By avoiding two of the points A;, B;, the remaining six points form a
hexagon H; with sides Aj x By, i # j # k # i. The intersections of opposite
sides of the hexagon H; lie on a Pappus line p;. Then, two of these Pap-
pus lines (and hence all four) coincide if and only if CR(A1, Ag; Az, Ay) =
CR(Bl, BQ; Bg, B4)

Figure 12 illustrates the previous corollary.

D4 B ).

FiGURE 12. The generalized Pappus configuration: The
Pappus lines p; coincide if and only if CR(A;1, Ag; A3, Ag) =
CR(Bb 327 B37 B4)

A weaker form of this statement is Lemma 3.8 in [7].
We get another interesting way of putting Theorem 5.1 (ii) by focussing
on the two triangles A1 A4(g1 X g4) and A2 As(g2 X g3):
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Corollary 6.3. Let A1B1C1 and AaB2Cs be two triangles. Then the fol-
lowing statements are equivalent:

(i) A1B1Cy1 and A2ByCy are perspective from a point.

(ii) A1B1C1 and AyBoCy are perspective from a line.

(iii) CR(Al,BQ; Il,Bé) = CR(AQ,Bl; IQ,BD where A/l = (Al X B2) X
(Bl X Cl), Bi = (A2 X Bl) X (A1 X Cl), A/2 = (AQ X Bl) X (BQ X CQ),
Bl = (A1 x B) x (Az x Cy) (see Figure 13).

(iV) CR(Bl,CQ;Bi,C@ = CR(BQ,Cl; Bé,Ci) where Bi = (Bl X CQ) X
(Cl X Al), Ci = (BQ X Cl) X (Bl X Al), Bé = (BQ X Cl) X (CQ X AQ),
Cé = (Bl X CQ) X (BQ X AQ)

(V) CR(Cl,AQ;Ci,Alg) = CR(CQ,Al;Cé,All) where Ci = (Cl X AQ) X
(Al X Bl), All = (CQ XAl) X (Cl XBl), Cé = (02 XAl) X (A2 XBQ),
AIQ = (Cl X AQ) X (02 X BQ)

So Corollary 6.3 is Desargues’ Theorem with an additional quantitative
equivalence that tells us when the perspectives occur.

-
44
02

=0

Ficure 13. Quantitative version of Desargue’s Theorem in
Corollary 6.3(iii).

Next, we want to demonstrate how we can use Theorem 5.1 (ii) to expand
the special case n = 4 of the generalized Ceva’s Theorem for n-gons which
can be found in [4, Theorem 2|. For n = 4, the theorem reads as follows:

Theorem 6.1 (Ceva’s Theorem for quadrilaterals). Let Ay, Ag, Az, Ay be
the vertices of a quadrilateral and P a given point. For i € {1,2,3,4} let
Di = (Az X P) X (Ai—l X Ai+1). Then,
(23) A1D2 A2D3 A3D4 AsDy —1
D2A3 D3A4 D4A1 D1A2 o
Note that the implication is only one-sided. But now Theorem 5.1 (ii)
tells us how we can generalize Theorem 6.1 to get an equivalence:

Theorem 6.2 (Two-sided Ceva’s Theorem for quadrilaterals). Let A;, Ao,
As, Ay be the vertices of a quadrilateral and let g1, g2, g3, g4 be lines such that

for each i € {1,2,3,4}, g; passes through A;. Then the following statements
are equivalent:
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Q) A1Dy AD3 AzDy AdDy 1
DyAs DsAy D4Ay DA,
where D; = g; x (Aj—1 x Aij+1) fori € {1,2,3,4}.

(il) g1 X 92,93 X g4, (A1 X Ag) x (Ag x A3) are collinear (see Figure 14).

(iii) g1 X g4, 92 X g3, (A1 x Ag) x (Az x Ay) are collinear.
It is easy to see that when g1, g2, g3, g4 are concurrent, (ii) and (iii) are

trivially satisfied, hence Theorem 6.2 is in fact a generalization of Theo-
rem 6.1.

FIGURE 14. Collinear points in Theorem 6.2(ii).

Can the cases n > 4 also be generalized in a similar fashion? The answer

is yes:
Theorem 6.3 (Two-sided Ceva’s Theorem for n-gons). For n > 3, let
P =[AY, ..., A}] be an n-gon and let g} ..., gy be lines such that for each
i€ {1,...,n}, g passes through A}. For m € {4,...,n}, the m-gon P™
can be reduced in a step to the (m — 1)-gon P™~1 by obeying the following
procedure:

e Choose two adjacent vertices AJ" and Af},, i € {1,...,m}.

o Replace AT and Aj, by

AP = (AT X AT X (ATL X AZL).
e Replace g* and 9;11 by

gt = AT X (g x gity).
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e For the other vertices, let
A1 _ AT forje{l,...;i—1},
J ATy forjedfi+1,...,m—1}
o Similarly, for the other lines, let
gm—lz g;n fO’/’jG{].,...,Z'*].},
J 9% forje{i+1,...,m—1}.
If it is possible to reduce P™ in (n — 3) steps to a triangle P3 for which

g3, 95,93 are concurrent, then every sequence of (n — 3) steps will lead to
such a triangle (see Figure 15). Furthermore, this is the case if and only if

AYDy ARDy  ARD}
DyAy DyAp — DrAy
where D} = g7 x (A}_y x A} ) forie{1,...,n}.

(24)

FIGURE 15. Ceva’s Theorem for a pentagon A3 ... A2.

In the proof we will make use of the area principle that can also be found
in [4]:

Lemma 6.1 (Area principle, see Figure 16). Whenever D is the intersection
point of two lines A1 X Ay and B x C, then there holds

A1D  [A1BC
(25) 1D _ [ABC

DA;  [BAyC]
Proof. Each side of (25) is equal to the ratio of the two heights of the
triangles A; BC and BA;C with respect to the base BC.

At some point, we will also need a slightly more refined version of the

area principle:

Lemma 6.2 (Area principle for unequal bases, see Figure 16). Whenever
D is the intersection point of two lines A1 X As and B x Cy, on which also
the point Cy lies, then there holds

AD  [ABCGY] BG
DA,  [BAyCy) BCy

(26)
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Proof. As above, we have

AlD . [AlBCQ] . [Achl] 'BCQ/BC’l . [Achl] B(Cy

DAy~ [BAy(CY) [BA3Ch)] "~ [BAyCy] BCy

FIGURE 16. Area principles.

Proof.[Proof of Theorem 6.3] We want to show that in every step, the
left-hand side of (24) is constant, i.e.:

(27)

APDY APDR  ApDY  APTIDRl oApTippl o ARSIDYT
Dy Ay DAy DrAp T Dy tap Tl Dpotap U Dprag

By symmetry we can assume that in this step, A", and A]" are replaced
by Am:} (this will make the notation easier since A;”_l = A7 for all j €
{1,...,m — 2}). Having a closer look at (27), we see that it is enough to
show

() Am-sDiz AmoDiny AnDn AnDY
DioAn o DpojAp DRApP  DpAy
_ARTDRTy AR DnT AT DY
DR An=y DpoiAf— pytagt

Let G),—2 and G be the intersections of g , and g{* with the new line
g%j. Further, let Gy,—1 = g, % gJ. By definition, G,,—1 also lies on
g"~1 (see Figure 17).

By using the area principle, we can rewrite all the fractions in (28). Let
us start with the left-hand side:

(29) An-sDho (AR 3AN 3G

D%—QAm—l [A?Z—QAm—le*Q}
Dy A% [Af 1 AT G
A™m . Dm AT CATG,,
(31) m—1"-"m :[ m—14‘m 1]
DmAT [A%AQ”Gm—ﬂ
Am D A™m AT
(32) m~—’1 :[ m 1G1]

DAy (AT ATGH]
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FIGURE 17. Proof of Theorem 6.3.

Also, note that:
(A2 AT 1Gm—1] _ Armanmfl

33 m -
(33) (Al G AT [ Gra] AT 1Ghyo
(34) [ARATG,] ARG

[ARAT Gl ARG
Now by putting all of this together, we get that the left-hand side of (28) is
equal to
(AT —3Am_2Gm-2] e
[AT" A3 G| Al G

Let us do the same for the right-hand side. Rewriting the fractions gives

(35)

us:
(36) A%:_%iD;ZE% _ [A%E%,AZE%GM]
DR An= (A4 1 Gmsl
(37) oDty My 1Ona] | AiiC
Dy AT [ADTIAT G AL Gra
(38) ARTIDrT AR ATT G

Dy AT [Ar Ay Gy
Hence the right-hand side of (28) is equal to
(A3 A =3Gms]  Ap=1Gh
[APHAD TG AR TG
which is equal to (35). We have proven now that in every step, the left-hand
side of (24) is constant.

(39)
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Now assume that there exists a sequence of (n — 3) steps which reduces
P" to a triangle P3 for which g3, g3, g3 are concurrent. Then by Ceva,
AIDY MDY DY
D3A3 D3A} DYA3
But as the product is constant, it must have been 1 right from the start.
This implies that also every other sequence of (n — 3) steps ends up with a
triangle for which this product is still 1, hence by Ceva the lines g3, g3, gg’ of
every such possible triangle are concurrent. This completes the proof.

We will call lines g7, ..., g, of an n-gon with the property as in Theo-
rem 6.3 pseudo-concurrent. Note that concurrency always implies pseudo-
concurrency. Also, note that the order of the lines g7, ..., g respectively of
the vertices A7, ..., A" matters, i.e. if the lines g7, g3, g§, g; of the quadri-
lateral A}A3A35A} are pseudo-concurrent, then this does not imply that the
lines g%, g3, g5, g4 of the quadrilateral A]A3A3A} are pseudo-concurrent.

(40)

A rather trivial but still quite nice consequence of this definition is the
following result:

Theorem 6.4. The internal angle bisectors of every n-gon are pseudo-
concurrent.

Proof. Using the notation of Theorem 6.3, this theorem follows by observ-
ing that whenever we replace some g;" and g;y; by a new line g;”_l, this
new line will thanks to its definition also be an internal angle bisector of
the reduced (m — 1)-gon P™~! (this is also true if P™ is not convex). After
(n — 3) steps, we get a triangle P3 and lines g3, g3, g3 which are the internal
angle bisectors of this triangle and hence are concurrent. Thus, the internal
angle bisectors of the original n-gon are pseudo-concurrent.

It is possible to consider the external angle bisectors as well and get the
following version:

Theorem 6.5. Let Ay,..., Ay, be ann-gon. For everyi € {1,...,n}, choose
one of the two angle bisectors in A;. If the number of chosen external angle
bisectors is even, then the chosen angle bisectors are pseudo-concurrent.

Proof. This follows by thoroughly checking all cases when replacing g¢;"
and gj"; by g1 and seeing that
e whenever g;" and g;"y; are both internal or both external angle bi-

sectors, then g;n_l is an internal angle bisector, and

e whenever one of g;" and g} | is an internal and the other an external
m—1

angle bisector, then g; is an external angle bisector,

hence the number of external angle bisectors will always stay even. In the
end, we get a triangle P? and either three internal angle bisectors or one in-
ternal and two external angle bisectors, hence the remaining angle bisectors
will be concurrent. From this, we get that the original angle bisectors are
pseudo-concurrent.

We can also generalize Menelaos in a similar way:

Theorem 6.6 (Two-sided Menelaos’ Theorem for n-gons). For n > 3, let
P = [A},..., A}] be an n-gon and let By ..., Bl be points such that for
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each i € {1,...,n}, B} lies on A} x A}, . Form € {4,...,n}, the m-gon
P™ can be reduced in a step to the (m—1)-gon P™~! by obeying the following
procedure:

e Choose a vertex A", i € {1,...,m}.
e Replace B™, and B" by

Bt = (AT x ALy x (B x B]").
o Let
A1 _ {jzz forj € {1,...i=1},
Ty forjed{i,...,m—1}
o Let
Bt {?: for j € {1,....i -2},
Ty forjed{i,...,m—1}
If it is possible to reduce P™ in (n — 3) steps to a triangle P3 for which

B?,Bg’,Bg are collinear, then every sequence of (n — 3) steps will lead to
such a triangle (see Figure 18). Furthermore, this is the case if and only if

() ApBY ApBy  AnBR

ByAy ByAy T BRAY

FIGURE 18. Theorem of Menelaos for the pentagon A3 ... A2.

Proof. We will show that in each step, the left-hand side of (41) will only
change by a factor —1. Precisely, we have to show that

m m mpm m—1 pm—1
Am—le—l AmBm _ Am—le—l

42 . — _
42) By Am BRAY Bm—iAPt

if the vertex A was chosen when reducing P™ to P™~1. But this follows
directly by applying Menelaos’ Theorem to the triangle A" A™ AT (see
Figure 19).
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An S
FIGURE 19. Proof of Theorem 6.6.

Hence, if there exists a sequence of (n — 3) steps that reduces P™ to a
triangle P for which B}, B3, Bg’ are collinear, then by Menelaos’ Theorem,
AiB} A3BS A}B3 _
BIA3 B3A} BIAD
But as the product only changed by a factor —1 in each of the (n — 3) steps,
we get that
A"BY  AZBE ABn
BZA}"‘ . B?"‘Ai Ce BZAZ =(=1)- (=13 = (-1

1442 2413 n411
This implies that also every other sequence of (n—3) steps leads to a triangle
for which B}, B3, B3 are collinear. This completes the proof.

As before, we suggest to call points Bf,...,B]; of an n-gon with the
property as in Theorem 6.6 pseudo-collinear. Again, collinearity implies
pseudo-collinearity, and the order of the points matters.

An immediate consequence of these new definitions is the following result:

(43) ~1.

(44)

Corollary 6.4. If the points By, ..., B, on the sides of an n-gon are pseudo-
collinear, then the lines by,...,b, in the dual configuration are pseudo-
concurrent and vice-versa.

The new concepts of pseudo-concurrency and pseudo-collinearity are a
very natural way to generalize the well-known terms concurrency and colline-
arity. As Theorem 6.4 and Corollary 6.4 show, it’s easy to transfer some
basic results to these new concepts. We are convinced that many more re-
sults can be carried over to this new setting, and are looking forward to
whatever results this new perception may inspire.
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