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COMMUNICATING HARMONIC PENCILS OF LINES

NORBERT HUNGERBÜHLER and CLEMENS POHLE

Abstract. Suppose there are n harmonic pencils of lines given in the
plane. We are interested in the question whether certain triples of these lines
are concurrent or if triples of intersection points of these lines are collinear,
provided that we impose suitable conditions on the initial harmonic pencils.
Such conditions can be that certain of the given lines coincide, are concur-
rent or that certain intersection points are collinear. The study of these
questions for n = 2, 3, 4 sheds light on some well known a�ne configurations
and provides new results in the projective setting. As applications, we will
formulate generalizations or stronger versions of the theorems of Pappus,
Desargues, Ceva and Menelaos. Notably, the generalized theorems of Ceva
and Menelaos suggest a new way to generalize the terms ‘collinearity’ and
‘concurrency’.

1. Introduction

Before we start, let us briefly fix some notation: Points will be denoted
by capital letters, lines by small letters. The intersection point of two lines
g and h is g ⇥ h, and A ⇥ B denotes the line trough A and B. The term
AB
CD is the quotient of the oriented lengths of the segments AB and CD on
an oriented line. The cross-ratio of four collinear points A,B,C,D is

CR(A,B;C,D) :=
AC

CB
· BD

DA
.

A harmonic quadruple of collinear points A,B,X, Y or concurrent lines
g, h, u, v will be denoted by (AB;XY ) and (gh;uv), respectively: Y is the
harmonic conjugate of X with respect to A and B (see, e.g., [1]). Finally, we
denote by [ABC] the signed area of a triangle ABC with respect to a given
orientation of the plane. In particular [ABC] = �[CBA] (see Figure 16).

Suppose we are given points A1, A2, . . . , An in the projective plane and
each point Ai carries a harmonic pencil of four lines which meet in Ai. In
general there will be 8n(n� 1) further intersection points of these lines. In-
teresting constellations concerning these lines and their points of intersection
are:
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• concurrent triples of lines,
• collinear triples of intersection points.

Of course, without any further conditions no such constellation will occur.
This changes if we let the n initial harmonic pencils of lines “communicate”
with each other. This means that we impose conditions of the following
kind:

• certain lines coincide,
• certain lines are concurrent,
• certain points of intersection are collinear.

Let us have a look at an example with two points A1, A2. Here we have the
following proposition, illustrated by Figure 1.

Proposition 1.1. Let A1, A2 be two points in the projective plane and
(ai1ai2; bi1bi2) harmonic pencils of lines at point Ai, i 2 {1, 2}. Then the
following holds: If three of the points

a11 ⇥ a21, a12 ⇥ a22, b11 ⇥ b21, b12 ⇥ b22

are collinear, then so are all four points.

Proof. The intersection points P,Q,X, Y of a harmonic pencil with a line
g are harmonic points. And vice versa, if four collinear harmonic points are
connected with a point A1 or A2, the connecting lines are a harmonic pencil.
Therefore the claim follows from the fact that the fourth harmonic line is
determined by the three others. This concludes the proof.

A1a11

a12 b11b12

A2
a21

a22

b22

b21

g

Y

X

Q

P

Figure 1. The configuration in Proposition 1.1.

A nice special case of Proposition 1.1 occurs, when a11 = a21 = a (see
Figure 2):

Corollary 1.1. Let A1, A2 be two points in the projective plane with a =
A1 ⇥A2, and (a, ai; bi1bi2) harmonic pencils of lines at point Ai, i 2 {1, 2}.
Then the triples of points

a1 ⇥ a2, b11 ⇥ b21, b12 ⇥ b22

a1 ⇥ a2, b11 ⇥ b22, b12 ⇥ b21

are collinear.
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A1

a1

b11

b12 A2

a2

a

b22

b21

Figure 2. Collinear intersection points of two communicat-
ing harmonic pencils (Corollary 1.1).

In Sections 2 and 3 we will illustrate the concept of communicating har-
monic pencils of lines with two examples which live in the a�ne plane.
There the harmonic pencils do not communicate in the above described
purely projective way. The idea is then to carry these two configurations
into the projective plane and to replace the a�ne conditions by projectively
invariant conditions. This will be done in Sections 4 and 5, respectively.
Finally, in Section 6, we will show how our results can be used to expand
some well-known theorems.

2. Harmonic pencils in affine triangles

Let A1A2A3 be an a�ne triangle with sides a1, a2, a3, where the notation
is such that Ai /2 ai. Let gi denote the inner angle bisectors of the triangle
and hi the outer angle bisectors in Ai. Then (aiai+1; gi+2hi+2) is a harmonic
pencil of lines for i 2 {1, 2, 3} (indices are taken cyclically). Obviously, the
following lines are concurrent.

(i) g1, g2, g3: The intersection point is the center of the incircle of the
triangle),

(ii) gi, hi+1, hi+2 for i 2 {1, 2, 3}: The intersection points are the centers
of the excircles (see Figure 3).

In Section 4 we will replace the angle bisectors in the triangle by lines gi, hi
which form harmonic pencils together with the sides of the triangle. It will
turn out that in this purely projective setting (i) occurs if and only if one
of the concurrencies in (ii) occurs (see Theorem 4.1).

The configuration in the next section is less well-known.

3. Harmonic pencils in affine complete quadrilaterals

This extremely rich configuration has first been described by Jakob Steiner
in [11]. We present the theorem translated from the French original, with a
few additional remarks in parentheses.

Theorem 3.1 (Jakob Steiner, 1827). For a complete quadrilateral with four
sides and six vertices there holds:
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A1

A2

a3

A3

a1 a2

h1

g1 h2

g2

h3

g3

I

I2 I1

I3

Figure 3. Incircle and excircles in triangle A1A2A3.

(i) The four sides, taken in groups of three, form four triangles. Their
circumcircles pass through a single point M (the Miquel point, see [8],
[9]).

(ii) The centers of these four circumcircles and M lie on a further circle.
(iii) The feet of the perpendiculars from M to the four sides of the

quadrilateral lie on a line s (the Simson-Wallace line), and M is
the only point with this property.

(iv) The orthocenters of the four triangles in (i) lie on a line c. (c is the
common radical axis of the three Thales circles over the diagonals
of the complete quadrilateral: Bodenmiller-Steiner Theorem, see [6,
p. 138]).

(v) The lines s and c are parallel. c is the middle line between M and
s.

(vi) The midpoints of the three diagonals of the complete quadrilateral lie
on a line n (Gauß-Newton Theorem, see [10], [2], [3, p. 112–121]).

(vii) The line n is perpendicular to c and s.
(viii) Each of the four triangles of the quadrilateral has an incircle and

three excircles which gives a total of sixteen circles. The centers Ck

of these circles lie in groups of four on eight new circles.
(ix) The eight circles mentioned in (viii) can be decomposed into two

groups of four circles. The four circles in on group are orthogonal
to the four circles of the other group. In particular, the four centers
of the circles of both groups lie each on a line, and these two lines are
orthogonal. (And the four circles in one of the two groups meet in
two points on the line which carries the centers of the other group.)

(x) The two perpendicular lines mentioned in (ix) meet in M .

We add the following observations to complete the picture and to focus
on the part of the constellation which is relevant for our purposes:
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Theorem 3.2. Let A1, A2, A3, A4 be the vertices of a quadrilateral with
sides a12 = A1 ⇥A2, a23 = A2 ⇥A3, a34 = A3 ⇥A4, a41 = A4 ⇥A1, and let
A5 = a12 ⇥ a34, A6 = a23 ⇥ a41. Denote by gi and hi the inner and outer
angle bisectors in the points Ai, i 2 {1, . . . , 6} (see Figure 4). Then there
holds:

(xi) The following quintuples of points are collinear:

A5, h1 ⇥ h4, g1 ⇥ g4, h3 ⇥ h2, g3 ⇥ g2 (on g5)

A6, h3 ⇥ h4, g3 ⇥ g4, h1 ⇥ h2, g1 ⇥ g2 (on g6)

A5, g1 ⇥ h4, h1 ⇥ g4, g3 ⇥ h2, h3 ⇥ g2 (on h5)

A6, g3 ⇥ h4, h3 ⇥ g4, g1 ⇥ h2, h1 ⇥ g2 (on h6)

Stated di↵erently: The sixteen centers Ck of the circles mentioned
in (viii) lie in groups of four on the angle bisectors of the complete
quadrilateral in the points A1, A2, . . . , A6: In each center Ck, three
of these angle bisectors meet.

(xii) If Ai, Aj lie on a side of the complete quadrilateral, then there are
four of the centers Ck mentioned in (viii), say Ck1 , Ck2 , Ck3 , Ck4,
such that Ai, Aj , Ck1 , Ck2 and Ai, Aj , Ck3 , Ck4 each lie on a circle.
This gives rise to 24 new circles: In each center Ck, three of the-
ses circles meet, together with two of the eight circles mentioned
in (viii).

(xiii) Each angle bisector carries two centers of the 24 new circles men-
tioned in (xii).

Proof.

(xi) It is clear from the construction, that the centers Ck of the incircles
and excircles lie on the angle bisectors in the points A1, A2, . . . , A6:
See Figure 4.

(xii),(xiii) Since the two angle bisectors in each of the points A1, . . . , A6 are
orthogonal, the 24 new circles are just Thales circles over two cen-
ters. See Figure 5, where the situation is illustrated for the segment
A2, A5 and two centers C and D. This completes the proof.

Tow sides of the quadrilateral meeting in Ai form together with the an-
gle bisectors in this point a harmonic pencil of lines. According to Theo-
rem 3.2 (xi), groups of four of the intersection points of angle bisectors and
one of the points Ai are collinear. In Section 5 we will consider this situation
where we replace the angle bisectors by harmonic lines.

4. Harmonic pencils in projective triangles

We now replace the angle bisectors in a triangle by lines such that in each
vertex a harmonic pencil of lines results. Each pair of these three harmonic
pencils shares a common line (a side of the triangle), and they are therefore
not completely independent. And indeed, certain intersection points of lines
turn out to be collinear.

Proposition 4.1. Let A1, A2, A3 be a triangle with sides ai, i 2 {1, 2, 3}
and such that Ai /2 a1. Through each vertex Ai we choose two lines gi, hi
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Figure 4. Complete quadrilateral with angle bisectors.

A5

A2

A3

A6

A1

A4

C

M

D

Figure 5. The center C of the incircle of the triangle
A2A3A5, the center D of the excircle opposite of its vertex
A3, and the vertices A2, A5 lie on a circle whose center M is
the midpoint of the segment CD.
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such that (aiai+1; gi+2hi+2) is a harmonic pencil of lines (indices are taken
cyclically). Then, there holds:

(i) The following triples of points are collinear:

on line ui: Ai, gi+1 ⇥ gi+2, hi+1 ⇥ hi+2

on line vi: Ai, gi+1 ⇥ hi+2, gi+2 ⇥ hi+1

for i 2 {1, 2, 3} (see the dashed lines in Figure 6).
(ii) The lines (aiai+1;ui+2vi+2) are harmonic pencils.

Proof. (i): This follows directly by applying Corollary 1.1 to the three pairs
of points Ai, Aj , i 6= j.

(ii): The harmonic pencil (a1a3;h2g2) cuts the line h3 in harmonic points,
i.e., the points

(a1 ⇥ h3, a3 ⇥ h3;h2 ⇥ h3, g2 ⇥ h3) = (a2 ⇥ h3, a3 ⇥ h3;u1 ⇥ h3, v1 ⇥ h3)

are harmonic. But this implies that (a2a3;u1v1) is a harmonic pencil. The
remaining cases are analogous.

A1

A3

a2 v2 v3

A2

u1

a1

a3

g3

u3

g2

u2

v1

g1

h3

h2

h1

Figure 6. Harmonic pencils in a triangle.

If we compare the situation in Section 2 of a triangle with angle bisectors
to the Proposition 4.1 above, we observe that here neither the lines g1, g2, g3
nor the lines gi, hi+1, hi+2 are concurrent in general. However, the next
theorem shows that one such concurrency already implies all other possible
concurrencies.

Theorem 4.1. Let A1, A2, A3 be a triangle with sides ai, i 2 {1, 2, 3} and
such that Ai /2 a1. Through each vertex Ai we choose two lines gi, hi such
that (aiai+1; gi+2hi+2) is a harmonic pencil of lines (indices are taken cycli-
cally). Then we have:

(i) If the lines g1, g2, g3 are concurrent, then so are the triples of lines
gi, hi+1, hi+2 for i 2 {1, 2, 3}.
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(ii) Vice versa, if one of the triples gi, hi+1, hi+2 is concurrent, then so
are the other two triples and the triple g1, g2, g3.

(iii) Each of the concurrencies in (i) and (ii) occurs if and only if

A1B3

B3A2

· A2B1

B1A3

· A3B2

B2A1

= 1

where Bi = ai ⇥ gi (see Figure 7).

A1

A2

a3

A3

a1 a2

B1

g1

B2

g2

I

g3

B3

h1

h3

J

h2

Figure 7. Harmonic pencils in the vertices of a triangle.

Proof. (i) Let I be the intersection point of g1, g2, g3, I12 = g1 ⇥ h2 and
I13 = g1 ⇥ h3. We want to show that I12 = I13. Since (aiai+1; gi+2hi+2) are
harmonic pencils for i 2 {2, 3}, we have

A1I

IB1

= �A1I12

I12B1

A1I

IB1

= �A1I13

I13B1

.

Hence A1I12
I12B1

= A1I13
I13B1

and therefore I12 = I13. Thus, g1, h2, h3 are concurrent.
The remaining cases are analogous.

(ii) This follows from (i) by exchanging the role of gi and hi in two of the
vertices Ai.

(iii) This is Ceva’s Theorem.

5. Harmonic pencils in projective complete quadrilaterals

We consider a quadrilateral like in Section 3 and replace the angle bisec-
tors by lines which form together with the sides of the quadrilateral harmonic
pencils. Since neighboring pencils share a common side they are not com-
pletely independent, and certain intersection points of the lines turn out to
be collinear:



Communicating harmonic pencils of lines 23

Proposition 5.1. Let A1, A2, A3, A4 be the vertices of a quadrilateral with
sides ai(i+1) = Ai ⇥ Ai+1 for i 2 {1, 2, 3, 4} (where indices are taken cycli-
cally). The quadrilateral is completed with A5 = a12 ⇥ a34, A6 = a41 ⇥ a23.
We assume that in each vertex A1, A2, A3, A4 two lines gi, hi build together
with the sides a harmonic pencil (a(i�1)iai(i+1); gihi). Then the following
triples of points are collinear:

A5, g1 ⇥ h4, h1 ⇥ g4, A6, g1 ⇥ h2, h1 ⇥ g2,

A5, g3 ⇥ h2, h3 ⇥ g2, A6, g3 ⇥ h4, h3 ⇥ g4,

A5, g1 ⇥ g4, h1 ⇥ h4, A6, g1 ⇥ g2, h1 ⇥ h2,

A5, g2 ⇥ g3, h2 ⇥ h3, A6, g3 ⇥ g4, h3 ⇥ h4

(see the dashed lines in Figure 8).

Proof. This follows directly by applying Corollary 1.1 to neighboring pairs
of vertices of the quarilateral A1, A2, A3, A4.

A1
A4

A3A2

a41

a34

a23

a12

g2

h2

g1 `
(2)
1

`
(2)
2

`
(1)
2

`
(1)
1

`
(3)
1

`
(3)
2

`
(4)
2

`
(4)
1

h1

g3

h3 g4

h4

A5

A6

Figure 8. Harmonic pencils in a quadrilateral.

Compared to the situation in Theorem 3.2, we observe that the four lines
which carry the quintuples of collinear intersection points each split up in
two lines (compare the dashed lines in Figures 4 and 8). One can move
e.g. g1 in Proposition 5.1 such that two of the split lines collapse. Then,
interestingly, not only one of the pairs of lines collapses, but all four pairs
collapse simultaneously:

Theorem 5.1. Let A1, A2, A3, A4 be the vertices of a quadrilateral with sides
ai(i+1) = Ai ⇥ Ai+1 for i 2 {1, 2, 3, 4} (where indices are taken cyclically).
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The quadrilateral is completed with A5 = a12⇥a34, A6 = a41⇥a23. Assume
that in each vertex A1, A2, A3, A4 two lines gi, hi build together with the sides
a harmonic pencil (a(i�1)iai(i+1); gihi). Finally, denote by `

(i) the following
four pairs of lines (see the dashed lines in Figure 8):

line `
(1)

1
: A5, g1 ⇥ h4, h1 ⇥ g4 and line `

(1)

2
: A5, g3 ⇥ h2, h3 ⇥ g2

line `
(2)

1
: A5, g1 ⇥ g4, h1 ⇥ h4 and line `

(2)

2
: A5, g2 ⇥ g3, h2 ⇥ h3

line `
(3)

1
: A6, g1 ⇥ h2, h1 ⇥ g2 and line `

(3)

2
: A6, g3 ⇥ h4, h3 ⇥ g4

line `
(4)

1
: A6, g1 ⇥ g2, h1 ⇥ h2 and line `

(4)

2
: A6, g3 ⇥ g4, h3 ⇥ h4

Then, if the two lines of one of the pairs `
(i) coincide, then the two lines of

all pairs coincide, and this is the case if and only if one of the following two
equivalent conditions holds:

(i)
4Y

i=1

AiBi(i+1)(i+2)

Bi(i+1)(i+2)Ai+1

·
AiBi(i+1)(i+3)

Bi(i+1)(i+3)Ai+1

= 1

where Bijk = aij ⇥ gk (see Figure 10).

(ii)
A1D2

D2A3

· A2D3

D3A4

· A3D4

D4A1

· A4D1

D1A2

= 1

where D1 = g1⇥(A2⇥A4), D3 = g3⇥(A2⇥A4), D2 = g2⇥(A1⇥A3),
D4 = g4 ⇥ (A1 ⇥A3) (see Figure 11).

Proof. According to Proposition 4.1(ii), the lines (a12a34; `
(2)

1
`
(1)

1
) and

(a12a34; `
(2)

2
`
(1)

2
) are harmonic. Therefore, we have `

(1)

1
= `

(1)

2
if and only

if `
(2)

1
= `

(2)

2
. The same argument yields that `

(3)

1
= `

(3)

2
if and only if

`
(4)

1
= `

(4)

2
.

Suppose now that `(2)
1

= `
(2)

2
. In order to show that this implies `(4)

1
= `

(4)

2

we use the Theorem of Menelaos for the following triangles and transversal
lines:

• triangle A1A4A5 with line a23:

(1)
A4A6

A6A1

· A1A2

A2A5

· A5A3

A3A4

= �1.

• triangle A1A5(g1 ⇥ g4) with line g2:

(2)
A1(g1 ⇥ g2)

(g1 ⇥ g2)(g1 ⇥ g4)
· (g1 ⇥ g4)(g2 ⇥ g3)

(g2 ⇥ g3)A5

· A5A2

A2A1

= �1.

• triangle A4A5(g1 ⇥ g4) with line g3:

(3)
(g1 ⇥ g4)(g3 ⇥ g4)

(g3 ⇥ g4)A4

· A4A3

A3A5

· A5(g2 ⇥ g3)

(g2 ⇥ g3)(g1 ⇥ g4)
= �1.

Multiplication of the equations (1)–(3) yields

(4)
A1(g1 ⇥ g2)

(g1 ⇥ g2)(g1 ⇥ g4)
· (g1 ⇥ g4)(g3 ⇥ g4)

(g3 ⇥ g4)A4

· A4A6

A6A1

= �1.
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Using Menelaos and (4) in the triangle A1(g1 ⇥ g4)A4 yields that the points

g1 ⇥ g2, g3 ⇥ g4, and A6 are collinear. Hence we have `
(4)

1
= `

(4)

2
as claimed.

The same argument shows that `(2)
1

= `
(2)

2
follows from `

(4)

1
= `

(4)

2
.

Now we show that `(2)
1

= `
(2)

2
is equivalent to condition (i) in the theorem.

Before we start, we set up some identities which hold in general, i.e., without

the hypothesis `
(2)

1
= `

(2)

2
. To this end, we apply Ceva’s Theorem to the

following triangles:

• triangle A1A5A4 with point g1 ⇥ g4:

(5)
A1B124

B124A5

· A5B341

B341A4

· A4C41

C41A1

= 1,

where C41 = a41 ⇥ `
(2)

1
.

• triangle A2A5A3 with point g2 ⇥ g3:

(6)
A5B123

B123A2

· A2C23

C23A3

· A3B342

B342A5

= 1,

where C23 = a23 ⇥ `
(2)

2
.

Now we employ Menelaos once more as follows:

• triangle A1A5A4 with transversal line g2:

(7)
A1A2

A2A5

· A5B342

B342A4

· A4B412

B412A1

= �1.

• triangle A1A5A4 with transversal line g3:

(8)
A1B123

B123A5

· A5A3

A3A4

· A4B413

B413A1

= �1.

• triangle A2A5A3 with transversal line g1:

(9)
A5A1

A1A2

· A2B231

B231A3

· A3B341

B341A5

= �1.

• triangle A2A5A3 with transversal line g4:

(10)
A5B124

B124A2

· A2B234

B234A3

· A3A4

A4A5

= �1.

The product of the six equations (5)–(10) simplifies to

⇣ · A1A5

A5A2

· A2C23

C23A3

· A3A5

A5A4

· A4C41

C41A1

= 1,

where ⇣ is the expression (i) in the theorem. Hence, ⇣ = 1 if and only if

(11)
A1A5

A5A2

· A2C23

C23A3

· A3A5

A5A4

· A4C41

C41A1

= 1.

So, we are done if we can show that (11) is equivalent to the condition

`
(2)

1
= `

(2)

2
. Indeed, define the points C

0
23

= `
(2)

2
⇥ (A2 ⇥ A4) and C

0
41

=

`
(2)

1
⇥ (A2 ⇥ A4) (see Figure 9). We use again the Theorem of Menelaos as

follows:

• triangle A1A2A4 with transversal line `
(2)

1
:

(12)
A1A5

A5A2

· A2C
0
41

C
0
41
A4

· A4C41

C41A1

= �1.
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A1

A4

A3

A2

a41

a34

a23

a12

A5

A6

C41

C
0
41

C23

C
0
23

`
(2)
2`

(2)
1

Figure 9. Equivalence of (11) and `
(2)

1
= `

(2)

2
.

• triangle A2A3A4 with transversal line `
(2)

2
:

(13)
A2C23

C23A3

· A3A5

A5A4

· A4C
0
23

C
0
23
A2

= �1.

The product of (12) and (13) is

A1A5

A5A2

· A2C23

C23A3

· A3A5

A5A4

· A4C41

C41A1

· A2C
0
41

C
0
41
A4

· A4C
0
23

C
0
23
A2

= 1.

Hence, equation (11) holds if and only if

A2C
0
41

C
0
41
A4

· A4C
0
23

C
0
23
A2

= 1,

or equivalently
A2C

0
41

C
0
41
A4

=
A2C

0
23

C
0
23
A4

.

But this is indeed true if and only if `(2)
1

= `
(2)

2
, as claimed.

It remains to show that the conditions (i) and (ii) in the theorem are
equivalent. We use again Menelaos (see Figure 11):

• triangle A4A2A3 with transversal line g1:

(14)
A4D1

D1A2

· A2B231

B231A3

· A3B341

B341A4

= �1.

• triangle A1A3A4 with transversal line g2:

(15)
A1D2

D2A3

· A3B342

B342A4

· A4B412

B412A1

= �1.

• triangle A2A4A1 with transversal line g3:

(16)
A2D3

D3A4

· A4B413

B413A1

· A1B123

B123A2

= �1.
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A1

A4

A3
A2

a41

a34

a23

a12 g2

g1 g3g4

A5

A6

`
(4)
1

`
(4)
2

`
(2)
2`

(2)
1

B123

B234

B341

B412

B124

B231

B342

B413

C41

C23

Figure 10. Lines and points in Theorem 5.1(i).

• triangle A3A1A2 with transversal line g4:

(17)
A3D4

D4A1

· A1B124

B124A2

· A2B234

B234A3

= �1.

The product of (14)–(17) is

⇣ · A4D1

D1A2

· A1D2

D2A3

· A2D3

D3A4

· A3D4

D4A1

= 1

which shows that indeed (i) and (ii) in the theorem are equivalent.
Remark. Note that if we fix three of the four lines g1, . . . , g4, then there

exists a unique position for the fourth line such that the criterion (ii) in
Theorem 5.1 is satisfied.

6. Broadening classical results

Condition (ii) in Theorem 5.1 is particularly interesting as it can be
framed in various ways that give further insights to specific constellations.
First, we can derive a statement about quadruples of points with the same
cross-ratio:

Corollary 6.1. Let A1, A2, A3, A4 and B1, B2, B3, B4 be two quadruples of
collinear points. Then the following statements are equivalent:

(i) (A1 ⇥ B1) ⇥ (A2 ⇥ B2), (A3 ⇥ B3) ⇥ (A4 ⇥ B4), (A1 ⇥ B3) ⇥ (A4 ⇥
B2), (A1⇥B4)⇥(A3⇥B2), (A2⇥B3)⇥(A4⇥B1), (A2⇥B4)⇥(A3⇥B1)
are collinear.

(ii) (A1 ⇥ B1) ⇥ (A3 ⇥ B3), (A2 ⇥ B2) ⇥ (A4 ⇥ B4), (A1 ⇥ B2) ⇥ (A4 ⇥
B3), (A1⇥B4)⇥(A2⇥B3), (A2⇥B1)⇥(A3⇥B4), (A3⇥B2)⇥(A4⇥B1)
are collinear.

(iii) (A1 ⇥ B1) ⇥ (A4 ⇥ B4), (A2 ⇥ B2) ⇥ (A3 ⇥ B3), (A1 ⇥ B2) ⇥ (A3 ⇥
B4), (A1⇥B3)⇥(A2⇥B4), (A2⇥B1)⇥(A4⇥B3), (A3⇥B1)⇥(A4⇥B2)
are collinear.
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A1

A4

A3

A2

a41

a34

a23

a12g2 g1

g3

g4

A5

A6

B123

B234

B341

B412

B124

B231

B342

B413

D3

D1

D2

D4

Figure 11. Lines and points in Theorem 5.1(ii).

(iv) (A1 ⇥ B2) ⇥ (A2 ⇥ B1), (A2 ⇥ B3) ⇥ (A3 ⇥ B2), (A3 ⇥ B4) ⇥ (A4 ⇥
B3), (A4⇥B1)⇥(A1⇥B4), (A1⇥B3)⇥(A3⇥B1), (A2⇥B4)⇥(A4⇥B2)
are collinear.

(v) CR(A1, A2;A3, A4) = CR(B1, B2;B3, B4)

Proof. By applying Theorem 5.1 (ii) to the quadrilateral A1B1A2B2 and
the lines g1 = A1 ⇥ B3, g2 = B1 ⇥ A3, g3 = A2 ⇥ B4, g4 = B2 ⇥ A4 we get
that

(18)
A1A3

A3A2

· B1B4

B4B2

· A2A4

A4A1

· B2B3

B3B1

= 1,

or equivalently, CR(A1, A2;A3, A4) = CR(B1, B2;B3, B4), is equivalent to
the collinearity of the points

(A1 ⇥B1)⇥ (A2 ⇥B2), (A1 ⇥B3)⇥ (A4 ⇥B2), (A2 ⇥B4)⇥ (A3 ⇥B1)

(see pair `(2) in Theorem 5.1).
Analogously, CR(A3, A4;A1, A2) = CR(B3, B4;B1, B2) is equivalent to

the collinearity of the points

(A3 ⇥B3)⇥ (A4 ⇥B4), (A3 ⇥B1)⇥ (A2 ⇥B4), (A4 ⇥B2)⇥ (A1 ⇥B3),

CR(A1, A2;A4, A3) = CR(B1, B2;B4, B3) is equivalent to the collinearity of
the points

(A1 ⇥B1)⇥ (A2 ⇥B2), (A1 ⇥B4)⇥ (A3 ⇥B2), (A2 ⇥B3)⇥ (A4 ⇥B1)

and CR(A3, A4;A2, A1) = CR(B3, B4;B2, B1) is equivalent to the collinear-
ity of the points

(A3 ⇥B3)⇥ (A4 ⇥B4), (A3 ⇥B2)⇥ (A1 ⇥B4), (A4 ⇥B1)⇥ (A2 ⇥B3).
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Since all the cross-ratio equations are in fact equivalent and because the
triples of points have su�ciently many common points, it follows that

(19) CR(A1, A2;A3, A4) = CR(B1, B2;B3, B4)

is equivalent to the collinearity of all those points, which proves the equiva-
lence of (i) and (v).

Now (ii), (iii) and (iv) follow by noting that

(20) CR(A1, A3;A2, A4) = CR(B1, B3;B2, B4),

(21) CR(A1, A4;A2, A3) = CR(B1, B4;B2, B3)

and

(22) CR(A1, A2;A3, A4) = CR(B2, B1;B4, B3)

are all equivalent to (19) and taking the corresponding intersection points.
This concludes the proof.

Note that the ordinary Pappus Theorem follows from Corollary 6.1 by let-
ting A1 and A3 as well as B1 and B3 coincide: This implies immediately that
CR(A1, A2;A3, A4) = 0 = CR(B1, B2;B3, B4) hence (iv) in Corollary 6.1
will always be true regardless of the constellation of A1, A2, A4, B1, B2, B4.

Interestingly, Corollary 6.1 (iv) is a particularly nice generalization of Pap-
pus’ Theorem with four points on each of two lines:

Corollary 6.2. Let A1, . . . , A4 and B1, . . . , B4 be collinear points, respec-
tively. By avoiding two of the points Ai, Bi, the remaining six points form a
hexagon Hi with sides Aj ⇥Bk, i 6= j 6= k 6= i. The intersections of opposite
sides of the hexagon Hi lie on a Pappus line pi. Then, two of these Pap-
pus lines (and hence all four) coincide if and only if CR(A1, A2;A3, A4) =
CR(B1, B2;B3, B4).

Figure 12 illustrates the previous corollary.

A1

A4

B1

B4

A3
A2

B3
B2

p4

p1

p2

p3

Figure 12. The generalized Pappus configuration: The
Pappus lines pi coincide if and only if CR(A1, A2;A3, A4) =
CR(B1, B2;B3, B4).

A weaker form of this statement is Lemma 3.8 in [7].
We get another interesting way of putting Theorem 5.1 (ii) by focussing

on the two triangles A1A4(g1 ⇥ g4) and A2A3(g2 ⇥ g3):
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Corollary 6.3. Let A1B1C1 and A2B2C2 be two triangles. Then the fol-
lowing statements are equivalent:

(i) A1B1C1 and A2B2C2 are perspective from a point.
(ii) A1B1C1 and A2B2C2 are perspective from a line.
(iii) CR(A1, B2;A

0
1, B

0
2) = CR(A2, B1;A

0
2, B

0
1) where A

0
1
= (A1 ⇥ B2)⇥

(B1⇥C1), B0
1
= (A2⇥B1)⇥(A1⇥C1), A0

2
= (A2⇥B1)⇥(B2⇥C2),

B
0
2
= (A1 ⇥B2)⇥ (A2 ⇥ C2) (see Figure 13).

(iv) CR(B1, C2;B
0
1, C

0
2) = CR(B2, C1;B

0
2, C

0
1) where B

0
1
= (B1 ⇥ C2) ⇥

(C1⇥A1), C 0
1
= (B2⇥C1)⇥(B1⇥A1), B0

2
= (B2⇥C1)⇥(C2⇥A2),

C
0
2
= (B1 ⇥ C2)⇥ (B2 ⇥A2).

(v) CR(C1, A2;C
0
1, A

0
2) = CR(C2, A1;C

0
2, A

0
1) where C

0
1
= (C1 ⇥ A2) ⇥

(A1⇥B1), A0
1
= (C2⇥A1)⇥(C1⇥B1), C 0

2
= (C2⇥A1)⇥(A2⇥B2),

A
0
2
= (C1 ⇥A2)⇥ (C2 ⇥B2).

So Corollary 6.3 is Desargues’ Theorem with an additional quantitative
equivalence that tells us when the perspectives occur.

A1

B1

C1

A2

C2

B2

A
0
1

B
0
1

A
0
2

B
0
2

Figure 13. Quantitative version of Desargue’s Theorem in
Corollary 6.3(iii).

Next, we want to demonstrate how we can use Theorem 5.1 (ii) to expand
the special case n = 4 of the generalized Ceva’s Theorem for n-gons which
can be found in [4, Theorem 2]. For n = 4, the theorem reads as follows:

Theorem 6.1 (Ceva’s Theorem for quadrilaterals). Let A1, A2, A3, A4 be
the vertices of a quadrilateral and P a given point. For i 2 {1, 2, 3, 4} let
Di = (Ai ⇥ P )⇥ (Ai�1 ⇥Ai+1). Then,

(23)
A1D2

D2A3

· A2D3

D3A4

· A3D4

D4A1

· A4D1

D1A2

= 1.

Note that the implication is only one-sided. But now Theorem 5.1 (ii)
tells us how we can generalize Theorem 6.1 to get an equivalence:

Theorem 6.2 (Two-sided Ceva’s Theorem for quadrilaterals). Let A1, A2,
A3, A4 be the vertices of a quadrilateral and let g1, g2, g3, g4 be lines such that
for each i 2 {1, 2, 3, 4}, gi passes through Ai. Then the following statements
are equivalent:
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(i)
A1D2

D2A3

· A2D3

D3A4

· A3D4

D4A1

· A4D1

D1A2

= 1

where Di = gi ⇥ (Ai�1 ⇥Ai+1) for i 2 {1, 2, 3, 4}.
(ii) g1⇥ g2, g3⇥ g4, (A1⇥A4)⇥ (A2⇥A3) are collinear (see Figure 14).

(iii) g1 ⇥ g4, g2 ⇥ g3, (A1 ⇥A2)⇥ (A3 ⇥A4) are collinear.

It is easy to see that when g1, g2, g3, g4 are concurrent, (ii) and (iii) are
trivially satisfied, hence Theorem 6.2 is in fact a generalization of Theo-
rem 6.1.

A1

A2

A3

A4

D1

g1

D3

g3

D4

g4

D2

g2

(A1 ⇥A4)⇥ (A2 ⇥A3)

g1 ⇥ g2

g3 ⇥ g4

Figure 14. Collinear points in Theorem 6.2(ii).

Can the cases n > 4 also be generalized in a similar fashion? The answer
is yes:

Theorem 6.3 (Two-sided Ceva’s Theorem for n-gons). For n � 3, let
P

n = [An
1
, . . . , A

n
n] be an n-gon and let gn

1
. . . , g

n
n be lines such that for each

i 2 {1, . . . , n}, gni passes through A
n
i . For m 2 {4, . . . , n}, the m-gon P

m

can be reduced in a step to the (m � 1)-gon P
m�1 by obeying the following

procedure:

• Choose two adjacent vertices A
m
i and A

m
i+1

, i 2 {1, . . . ,m}.
• Replace A

m
i and A

m
i+1

by

A
m�1

i = (Am
i�1 ⇥A

m
i )⇥ (Am

i+1 ⇥A
m
i+2).

• Replace g
m
i and g

m
i+1

by

g
m�1

i = A
m�1

i ⇥ (gmi ⇥ g
m
i+1).
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• For the other vertices, let

A
m�1

j =

(
A

m
j for j 2 {1, . . . , i� 1},

A
m
j+1

for j 2 {i+ 1, . . . ,m� 1}.
• Similarly, for the other lines, let

g
m�1

j =

(
g
m
j for j 2 {1, . . . , i� 1},
g
m
j+1

for j 2 {i+ 1, . . . ,m� 1}.

If it is possible to reduce P
n in (n � 3) steps to a triangle P

3 for which
g
3

1
, g

3

2
, g

3

3
are concurrent, then every sequence of (n � 3) steps will lead to

such a triangle (see Figure 15). Furthermore, this is the case if and only if

(24)
A

n
1
D

n
2

D
n
2
A

n
3

· A
n
2
D

n
3

D
n
3
A

n
4

· . . . · A
n
nD

n
1

D
n
1
A

n
2

= 1,

where D
n
i = g

n
i ⇥ (An

i�1
⇥A

n
i+1

) for i 2 {1, . . . , n}.

A
5
1

A
4
2

g
4
2

A
3
3

g
3
3

A
5
5

A
5
4

A
5
3

A
5
2

g
5
1

g
5
4

g
5
5

g
5
3

g
5
2

Figure 15. Ceva’s Theorem for a pentagon A
5

1
. . . A

5

5
.

In the proof we will make use of the area principle that can also be found
in [4]:

Lemma 6.1 (Area principle, see Figure 16). Whenever D is the intersection
point of two lines A1 ⇥A2 and B ⇥ C, then there holds

(25)
A1D

DA2

=
[A1BC]

[BA2C]
.

Proof. Each side of (25) is equal to the ratio of the two heights of the
triangles A1BC and BA2C with respect to the base BC.

At some point, we will also need a slightly more refined version of the
area principle:

Lemma 6.2 (Area principle for unequal bases, see Figure 16). Whenever
D is the intersection point of two lines A1 ⇥A2 and B ⇥ C1, on which also
the point C2 lies, then there holds

(26)
A1D

DA2

=
[A1BC1]

[BA2C2]
· BC2

BC1

.
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Proof. As above, we have

A1D

DA2

=
[A1BC2]

[BA2C2]
=

[A1BC1] ·BC2/BC1

[BA2C2]
=

[A1BC1]

[BA2C2]
· BC2

BC1

.

A1

A2

B

C

D

A1

A2

B

C1

D

C2

Figure 16. Area principles.

Proof.[Proof of Theorem 6.3] We want to show that in every step, the
left-hand side of (24) is constant, i.e.:
(27)
A

m
1
D

m
2

D
m
2
A

m
3

· A
m
2
D

m
3

D
m
3
A

m
4

· . . . · A
m
mD

m
1

D
m
1
A

m
2

=
A

m�1

1
D

m�1

2

D
m�1

2
A

m�1

3

· A
m�1

2
D

m�1

3

D
m�1

3
A

m�1

4

· . . . ·
A

m�1

m�1
D

m�1

1

D
m�1

1
A

m�1

2

By symmetry we can assume that in this step, Am
m�1

and A
m
m are replaced

by A
m�1

m�1
(this will make the notation easier since A

m�1

j = A
m
j for all j 2

{1, . . . ,m � 2}). Having a closer look at (27), we see that it is enough to
show

(28)
A

m
m�3

D
m
m�2

D
m
m�2

A
m
m�1

·
A

m
m�2

D
m
m�1

D
m
m�1

Am
m

·
A

m
m�1

D
m
m

Dm
mA

m
1

· A
m
mD

m
1

D
m
1
A

m
2

=

=
A

m�1

m�3
D

m�1

m�2

D
m�1

m�2
A

m�1

m�1

·
A

m�1

m�2
D

m�1

m�1

D
m�1

m�1
A

m�1

1

·
A

m�1

m�1
D

m�1

1

D
m�1

1
A

m�1

2

Let Gm�2 and G1 be the intersections of gmm�2
and g

m
1

with the new line
g
m�1

m�1
. Further, let Gm�1 = g

m
m�1

⇥ g
m
m. By definition, Gm�1 also lies on

g
m�1

m�1
(see Figure 17).

By using the area principle, we can rewrite all the fractions in (28). Let
us start with the left-hand side:

A
m
m�3

D
m
m�2

D
m
m�2

A
m
m�1

=
[Am

m�3
A

m
m�2

Gm�2]

[Am
m�2

A
m
m�1

Gm�2]
(29)

A
m
m�2

D
m
m�1

D
m
m�1

Am
m

=
[Am

m�2
A

m
m�1

Gm�1]

[Am
m�1

Am
mGm�1]

(30)

A
m
m�1

D
m
m

Dm
mA

m
1

=
[Am

m�1
A

m
mGm�1]

[Am
mA

m
1
Gm�1]

(31)

A
m
mD

m
1

D
m
1
A

m
2

=
[Am

mA
m
1
G1]

[Am
1
A

m
2
G1]

(32)
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A
m
m�3

A
m
m�2

A
m
1

A
m
2

A
m�1
m�1

A
m
m�1

A
m
m

D
m
m�2

D
m
m�1

D
m
m

D
m
1

Gm�1

D
m�1
m�2

D
m�1
m�1

D
m�1
1

Gm�2G1

Figure 17. Proof of Theorem 6.3.

Also, note that:

[Am
m�2

A
m
m�1

Gm�1]

[Am
m�2

A
m
m�1

Gm�2]
=

A
m�1

m�1
Gm�1

A
m�1

m�1
Gm�2

(33)

[Am
mA

m
1
G1]

[Am
mA

m
1
Gm�1]

=
A

m�1

m�1
G1

A
m�1

m�1
Gm�1

(34)

Now by putting all of this together, we get that the left-hand side of (28) is
equal to

(35)
[Am

m�3
A

m
m�2

Gm�2]

[Am
1
A

m
2
G1]

·
A

m�1

m�1
G1

A
m�1

m�1
Gm�2

.

Let us do the same for the right-hand side. Rewriting the fractions gives
us:

A
m�1

m�3
D

m�1

m�2

D
m�1

m�2
A

m�1

m�1

=
[Am�1

m�3
A

m�1

m�2
Gm�2]

[Am�1

m�2
A

m�1

m�1
Gm�2]

(36)

A
m�1

m�2
D

m�1

m�1

D
m�1

m�1
A

m�1

1

=
[Am�1

m�2
A

m�1

m�1
Gm�2]

[Am�1

m�1
A

m�1

1
G1]

·
A

m�1

m�1
G1

A
m�1

m�1
Gm�2

(37)

A
m�1

m�1
D

m�1

1

D
m�1

1
A

m�1

2

=
[Am�1

m�1
A

m�1

1
G1]

[Am�1

1
A

m�1

2
G1]

(38)

Hence the right-hand side of (28) is equal to

(39)
[Am�1

m�3
A

m�1

m�2
Gm�2]

[Am�1

1
A

m�1

2
G1]

·
A

m�1

m�1
G1

A
m�1

m�1
Gm�2

,

which is equal to (35). We have proven now that in every step, the left-hand
side of (24) is constant.
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Now assume that there exists a sequence of (n � 3) steps which reduces
P

n to a triangle P
3 for which g

3

1
, g

3

2
, g

3

3
are concurrent. Then by Ceva,

(40)
A

3

1
D

3

2

D
3

2
A

3

3

· A
3

2
D

3

3

D
3

3
A

3

1

· A
3

3
D

3

1

D
3

1
A

3

2

= 1.

But as the product is constant, it must have been 1 right from the start.
This implies that also every other sequence of (n� 3) steps ends up with a
triangle for which this product is still 1, hence by Ceva the lines g3

1
, g

3

2
, g

3

3
of

every such possible triangle are concurrent. This completes the proof.
We will call lines g

n
1
, . . . , g

n
n of an n-gon with the property as in Theo-

rem 6.3 pseudo-concurrent. Note that concurrency always implies pseudo-
concurrency. Also, note that the order of the lines gn

1
, . . . , g

n
n respectively of

the vertices A
n
1
, . . . , A

n
n matters, i.e. if the lines g

4

1
, g

4

2
, g

4

3
, g

4

4
of the quadri-

lateral A4

1
A

4

2
A

4

3
A

4

4
are pseudo-concurrent, then this does not imply that the

lines g4
1
, g

4

3
, g

4

2
, g

4

4
of the quadrilateral A4

1
A

4

3
A

4

2
A

4

4
are pseudo-concurrent.

A rather trivial but still quite nice consequence of this definition is the
following result:

Theorem 6.4. The internal angle bisectors of every n-gon are pseudo-
concurrent.

Proof. Using the notation of Theorem 6.3, this theorem follows by observ-
ing that whenever we replace some g

m
i and g

m
i+1

by a new line g
m�1

i , this
new line will thanks to its definition also be an internal angle bisector of
the reduced (m� 1)-gon P

m�1 (this is also true if Pm is not convex). After
(n� 3) steps, we get a triangle P

3 and lines g3
1
, g

3

2
, g

3

3
which are the internal

angle bisectors of this triangle and hence are concurrent. Thus, the internal
angle bisectors of the original n-gon are pseudo-concurrent.

It is possible to consider the external angle bisectors as well and get the
following version:

Theorem 6.5. Let A1, . . . , An be an n-gon. For every i 2 {1, . . . , n}, choose
one of the two angle bisectors in Ai. If the number of chosen external angle
bisectors is even, then the chosen angle bisectors are pseudo-concurrent.

Proof. This follows by thoroughly checking all cases when replacing g
m
i

and g
m
i+1

by g
m�1

i and seeing that

• whenever gmi and g
m
i+1

are both internal or both external angle bi-

sectors, then g
m�1

i is an internal angle bisector, and
• whenever one of gmi and g

m
i+1

is an internal and the other an external

angle bisector, then g
m�1

i is an external angle bisector,

hence the number of external angle bisectors will always stay even. In the
end, we get a triangle P 3 and either three internal angle bisectors or one in-
ternal and two external angle bisectors, hence the remaining angle bisectors
will be concurrent. From this, we get that the original angle bisectors are
pseudo-concurrent.

We can also generalize Menelaos in a similar way:

Theorem 6.6 (Two-sided Menelaos’ Theorem for n-gons). For n � 3, let
P

n = [An
1
, . . . , A

n
n] be an n-gon and let B

n
1
. . . , B

n
n be points such that for
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each i 2 {1, . . . , n}, Bn
i lies on A

n
i ⇥ A

n
i+1

. For m 2 {4, . . . , n}, the m-gon
P

m can be reduced in a step to the (m�1)-gon P
m�1 by obeying the following

procedure:

• Choose a vertex A
m
i , i 2 {1, . . . ,m}.

• Replace B
m
i�1

and B
m
i by

B
m�1

i�1
= (Am

i�1 ⇥A
m
i+1)⇥ (Bm

i�1 ⇥B
m
i ).

• Let

A
m�1

j =

(
A

m
j for j 2 {1, . . . , i� 1},

A
m
j+1

for j 2 {i, . . . ,m� 1}.
• Let

B
m�1

j =

(
B

m
j for j 2 {1, . . . , i� 2},

B
m
j+1

for j 2 {i, . . . ,m� 1}.

If it is possible to reduce P
n in (n � 3) steps to a triangle P

3 for which
B

3

1
, B

3

2
, B

3

3
are collinear, then every sequence of (n � 3) steps will lead to

such a triangle (see Figure 18). Furthermore, this is the case if and only if

(41)
A

n
1
B

n
1

B
n
1
A

n
2

· A
n
2
B

n
2

B
n
2
A

n
3

· . . . · A
n
nB

n
n

Bn
nA

n
1

= (�1)n.

A1 A2

A3

A4

A5

B1

B5

B4

B3

B2

Figure 18. Theorem of Menelaos for the pentagon A
5

1
. . . A

5

5
.

Proof. We will show that in each step, the left-hand side of (41) will only
change by a factor �1. Precisely, we have to show that

(42)
A

m
m�1

B
m
m�1

B
m
m�1

Am
m

· A
m
mB

m
m

Bm
mA

m
1

= �
A

m�1

m�1
B

m�1

m�1

B
m�1

m�1
A

m�1

1

if the vertex A
m
m was chosen when reducing P

m to P
m�1. But this follows

directly by applying Menelaos’ Theorem to the triangle A
m
m�1

A
m
mA

m
1

(see
Figure 19).
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A
m
m�1

A
m
m

A
m
1

B
m
m

B
m
m�1

B
m�1
m�1

Figure 19. Proof of Theorem 6.6.

Hence, if there exists a sequence of (n � 3) steps that reduces P
n to a

triangle P
3 for which B

3

1
, B

3

2
, B

3

3
are collinear, then by Menelaos’ Theorem,

(43)
A

3

1
B

3

1

B
3

1
A

3

2

· A
3

2
B

3

2

B
3

2
A

3

3

· A
3

3
B

3

3

B
3

3
A

3

1

= �1.

But as the product only changed by a factor �1 in each of the (n�3) steps,
we get that

(44)
A

n
1
B

n
1

B
n
1
A

n
2

· A
n
2
B

n
2

B
n
2
A

n
3

· . . . · A
n
nB

n
n

Bn
nA

n
1

= (�1) · (�1)n�3 = (�1)n.

This implies that also every other sequence of (n�3) steps leads to a triangle
for which B

3

1
, B

3

2
, B

3

3
are collinear. This completes the proof.

As before, we suggest to call points B
n
1
, . . . , B

n
n of an n-gon with the

property as in Theorem 6.6 pseudo-collinear. Again, collinearity implies
pseudo-collinearity, and the order of the points matters.

An immediate consequence of these new definitions is the following result:

Corollary 6.4. If the points B1, . . . , Bn on the sides of an n-gon are pseudo-
collinear, then the lines b1, . . . , bn in the dual configuration are pseudo-
concurrent and vice-versa.

The new concepts of pseudo-concurrency and pseudo-collinearity are a
very natural way to generalize the well-known terms concurrency and colline-
arity. As Theorem 6.4 and Corollary 6.4 show, it’s easy to transfer some
basic results to these new concepts. We are convinced that many more re-
sults can be carried over to this new setting, and are looking forward to
whatever results this new perception may inspire.
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