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Abstract We consider families of triangles which share the same Brocard angle.
Historically, such families first occurred in the context of projections of equilateral
triangles. We introduce two new Brocard families. The first one is related to triangles
that are inscribed in a certain way in a triangle. The second new Borcard family
occurs in a configuration related to Routh’s theorem.
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1 Introduction

The Brocard points are a classic of triangular geometry. They are named after the
French mathematician Henri Brocard who investigated these points around 1875 (see
[7] for a historical note, and [6, p. 10] or [1, p. 48–52] for a modern presentation).
Recall that the first Brocard point of a triangle ABC is a point P such that ^BAP D
^CBP D ^ACP (see Fig. 1). To see that such a point exists, consider the three
circles cA,cB,cC, were cA passes through A and is tangent to the side BC in B, and
similarly for cB and cC. Then it follows from Miquel’s Theorem (see the original
work [8, 9] or [3, Theorem 3.32] for a modern presentation) that the three circles
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Fig. 1 The first Brocard point P
of the triangle ABC

meet in a common point P. By Eucl. III.321 it follows that the three angles marked
with ! in the figure are equal. The second Brocard point Q is defined similarly by
the property that ^ABQ D ^BCQ D ^CAQ. It is astonishing that these angles
are also equal to !, the so called Brocard angle of the triangle.

Before we begin, a word about the notation used. We will denote a line through
the points A and B by AB, and at the same time we will write AB for the segment
AB and its length. It will always be clear from the context what is meant.

2 Brocard families

William Gallatly made in [4, p. 91] an interesting observation. If equilateral triangles
are projected orthogonally onto a plane, then all projected triangles have the same
Brocard angle (see Fig. 2). The reader is invited to show that the following version
is also true: If equilateral triangles are projected by rays orthogonal to the triangle
plane onto another plane, then all projected triangles share the same Brocard angle.

In this article we are interested in other families of triangles all sharing the same
Brocard angle. Formally we define such a family as follows.

Definition 1 Let .4�/� be a family of triangles in the Euclidean plane, where the
parameter � belongs to a finite or infinite set. Let the sides of the triangle 4� be
a�; b�, and c�. Then, .4�/� is called a Brocard family, if all triangles 4� share
the same Brocard angle.

Brocard families can easily be characterised by the following arithmetic criterion.

1 The chord-tangent angle is the same size as an opposite inscribed angle.
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Fig. 2 The blue equilateral
triangle is orthogonally projected
to the red triangle

Lemma 1 .4�/� is a Brocard family if and only if the value

a4
� C b4

� C c4
�

.a2
� C b2

� C c2
�/2

is a constant independent of �.

Proof The Brocard angle ! of the triangle 4� is given by

tan.!/ D 4 area.4�/

a2
� C b2

� C c2
�

(see, e.g., [5, p. 90–93] or [6, p. 10]). Using the well known formula

area.4�/ D 1

4

q
.a2

� C b2
� C c2

�/2 � 2.a4
� C b4

� C c4
�/

for the area of the triangle 4�, we get

tan.!/ D
s

1 � 2
a4

� C b4
� C c4

�

.a2
� C b2

� C c2
�/2

:

This finishes the proof. �

The first new Brocard family is obtaind by inscribing a triangleA�B�C� in a triangle
ABC such that the three vertices A�; B�; C� divide the sides of ABC all in the same
ration � (see Fig. 3). More precisely we have the following theorem.

Theorem 1 Let A�B�C� be a triangle inscribed in the triangle ABC such that
A� lies on the line BC, B� lies on the line CA, C� lies on the line AB, and
AC� D � AB; BA� D � BC; CB� D � CA for � 2 R. Then, .A�B�C�/� is
a Brocard family which contains the triangle ABC for � D 0.
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Fig. 3 The points A�; B�; C�

divide the sides of the triangle in
the same ratio. Then the Brocard
angle ! is the same for the
triangles ABC and A�B�C�

Proof By the law of cosines, applied to the triangles ABC and AC�B� respectively,
we have

a2 D b2 C c2 � 2bccos.˛/

a2
� D .1 � �/2b2 C �2c2 � 2�.1 � �/bc cos.˛/

where we adopt the notation from Fig. 4. Eliminating cos.˛/ from the two equations
yields

a2
� D �.1 � �/a2 C .1 � 3� C 2�2/b2 C �.2� � 1/c2:

Fig. 4 Proof of Theorem 1
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Cyclically, we have also

b2
� D �.1 � �/b2 C .1 � 3� C 2�2/c2 C �.2� � 1/a2

c2
� D �.1 � �/c2 C .1 � 3� C 2�2/a2 C �.2� � 1/b2:

If we add up the four squares of the sides, we get

a2
� C b2

� C c2
� D .a2 C b2 C c2/.1 � 3� C 3�2/:

Squaring the squares we obtain for the sum of the fourth powers

a4
� C b4

� C c4
� D .a4 C b4 C c4/.1 � 3� C 3�2/2

and it follows that

a4
� C b4

� C c4
�

.a2
� C b2

� C c2
�/2

D a4 C b4 C c4

.a2 C b2 C c2/2
:

Now the claim follows immediately from the lemma. �

The second new Brocard family we want to present is related to the first one in that
the points A�; B�, and C� on the sides of the triangle ABC again play a decisive
role. This time, we consider the triangle with sides AA�; BB�; CC� (see Fig. 5).
This configuration occurs in Routh’s theorem (see [2, Theorem 13.55]) if the same
division ratio applies on all three sides.

It turns out that these triangles also form a Brocard family, and we have the
following theorem.

Fig. 5 Theorem 2: The red
triangles form a Brocard family
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Theorem 2 Let A�; B�; C� be the points on the side of a triangle ABC as specified
in Theorem 1. Then the triangles with the lines AA�; BB�; CC� as sides form
a Brocard family which contains the triangle ABC for � D 0.

Proof By the law of cosines, applied to the triangles ABC and AC�C respectively,
we have

a2 D b2 C c2 � 2bccos.˛/

CC 2
� D b2 C �2c2 � 2�bccos.˛/

where we adopt the notation from Fig. 6. Eliminating cos.˛/ from the two equations
yields for the square of the length of the Cevian CC�

CC 2
� D .1 � �/b2 C �.� � 1/c2 C �a2:

Cyclically, we obtain

AA2
� D .1 � �/c2 C �.� � 1/a2 C �b2 (1)

BB2
� D .1 � �/a2 C �.� � 1/b2 C �c2: (2)

We denote the vertices of the triangle with the lines AA�; BB�, and CC� as sides
by A0

�; B 0
�; C 0

�, as indicated in Fig. 6. In order to apply the criterion formulated
in the lemma, we need to calculate the length of the sides a�; b�, and c� of this
triangle. To do so, we now use the theorem of Menelaus in the triangle ABA� with
the line CC�. We obtain

AC�

C�B
� BC

CA�

� A�B 0
�

B 0
�A

D �1:

Fig. 6 Proof of Theorem 2
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This can be written as

A�B 0
�

B 0
�A

D C�B

AC�

� CA�

CB
D .1 � �/2

�
:

Using the notation from Fig. 6, this can be reformulated as

a� C a3

a1

D .1 � �/2

�

and hence

AA�

a1

D a1 C a� C a3

a1

D 1 C a� C a3

a1

D 1 C .1 � �/2

�
D � � 1 C 1

�
: (3)

Accordingly, the ratios BB�

b1
and CC�

c1
have the same value. Again by the theorem

of Menelaus, this time applied to the triangle ABC 0
� and the line CC�, we get:

AC�

C�B
� BA0

�

A0
�C 0

�

� C 0
�B 0

�

B 0
�A

D �1

and hence

BA0
�

A0
�C 0

�

� C 0
�B 0

�

AB 0
�

D C�B

AC�

D 1 � �

�
:

This can be written as

b1 C b�

b�

� a�

a1

D 1 � �

�
: (4)

Cyclically, we have

c1 C c�

c�

� b�

b1

D 1 � �

�
(5)

a1 C a�

a�

� c�

c1

D 1 � �

�
: (6)

Solving the Eqs. (4), (5) and (6) for a�; b�; c� gives

a� D a1

� 1

�
� 2

�
; b� D b1

� 1

�
� 2

�
; c� D c1

� 1

�
� 2

�
: (7)
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Now, from Eqs. (3) and (7) we get

a� D a1

� 1

�
� 2

� D AA�

� � 1 C 1
�

� 1

�
� 2

� D AA�

1 � 2�

1 � � C �2
: (8)

Taking the square in Eq. (8) and using Eq. (1) we have

a2
� D � 1 � 2�

1 � � C �2

�2�
.1 � �/c2 C �.� � 1/a2 C �b2

�

and cyclically

b2
� D � 1 � 2�

1 � � C �2

�2�
.1 � �/a2 C �.� � 1/b2 C �c2

�

c2
� D � 1 � 2�

1 � � C �2

�2�
.1 � �/b2 C �.� � 1/c2 C �a2

�
:

Summing up the last three equations, we obtain

a2
� C b2

� C c2
� D .a2 C b2 C c2/

.1 � 2�/2

1 � � C �2
:

Squaring the squares we find for the sum of the fourth powers

a4
� C b4

� C c4
� D .a4 C b4 C c4/

.1 � 2�/4

.1 � � C �2/2

and it follows that

a4
� C b4

� C c4
�

.a2
� C b2

� C c2
�/2

D a4 C b4 C c4

.a2 C b2 C c2/2
:

Now the claim follows immediately from the lemma and we are done. �

By the calculations in the previous proof, we have

AA� W a1 W a� W a3 D .1 � � C �2/ W � W .1 � 2�/ W �2

and the same ratios apply for the segments on BB� and CC�. Hence we obtain as
a corollary the following.

Corollary 1 The triangles made from the sides AA�; BB�; CC� form a Brocard
family. The triangles made from the sides a1, b1, c1 form a Brocard family. The
triangles made from the sides a3, b3, c3 form a Brocard family.
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