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If for a linear symmetric (unbounded) operator F and a linear operator S 
holds 

FSq (F) = Sp (F) 

on the span of the eigenspaces of F for two polynomials p and q, then S is 
a raising operator. This means roughly that if FYi = A,Yi then Yi+l:= SYi is 

an eigenvector of F with eigenvalue Ai+l = : ~~:~. Also an inverse 

statement of this kind holds true. We use this technique in order to discuss 
several eigenvalue problems. Similarly, we consider lowering operators T , 
and discuss commutator relations between Sand T. 

1. Introduction 

The relation between a linear operator and its spectrum has many aspects which 
have been extensively investigated: e.g. it is well known that the eigenvalues of a 
matrix depend in an unstable way on the coefficients (see e.g. [12]). Another question 
is how far the spectrum determines the operator (see [8], [5], [2], [6]). Other aspects 
are important from the physical point or" view: 

·EXAMPLE 1 (Dirac [1]). As an example how algebraic methods may help to 
solve eigenvalue problems we recall the factorization method for the operator <p of 
the harmonic oscillator 

2 2 
<p :=-D +x 

where D:= ! with independent variable x E R. We consider <p as an unbounded 

symmetric operator defined on the Schwartz space S (R) c L 
2 

(R). For the operators 
S := - D + x and T:= D + x we have 
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ST = q> - I and TS = q> + I , (1) 

where I denotes the identity and hence 

<pS - S<p= 2S (2) 

and 

T<p - <pT = 2T. (3) 

Observe that 

Ty=O 

2 

has the (upto multiplication with a constant) unique solution YI (x) = exp (-~) in 

S(R) and hence from (1) it follows that YI is an eigenfunction of <p with eigenvalue 

Al = 1. Then we have by (2) for Y2 := SYI E S (R) 

<PY2 = <pSYl = (S<p + 2S) YI 

i.e. Y2 is an eigenfunction for eigenvalue A2 = Al + 2. By iteration we obtain a 

sequence Yi E S (R) of eigenfunctions generated by Yi+l = SYi with eigenvalues Ai 

which form an arithmetic sequence Ai+ 1 = Ai + 2. 

On the other hand, if Y denotes any eigenfunction of <p, i.e. <PY = AY, then, by (3). 
<p Ty = (A - 2) y. Hence, either Ty = 0 and thus Y = Yl, or Ty is an eigenfunction of <p 
with eigenvalue A - 2. Since the spectrum of the positive definite operator <p is 
positive, iteration of this argument shows, that A = Ai for some i. Hence, no other 

eigenvalues than the arithmetic sequence Ai that we found exist. By the same 
argument we have that, since the kernel of T consists of the one dimensional 
eigenspace spanned by Yl, all eigenspaces must be one dimensional. Of course, the 

eigenfunctions Yi are L2 -orhogonal and in fact they fonn an orthogonal base of 

L2 (R). 0 

For a descriptiGn of the general factorization method see [4], [13], [7], [3] and 
[9]- [11]. 

The aim of this paper is to present an algebraic method which has some 
common features with the factorization method and which allows to generate 
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eigenfunctions and eigenvalues in some more general situations. 

2. Theoretical Foundation of the Method 

The motivation in this section is to treat generalizations of the commutator 
equation (2) (see also [14]-[16]) : 

Let L be a complex vector space equipped with a non-degenerate sesquilinear 
fonn (-,.), i.e. for all x, Y, Z ELand all A E C holds 

(x + AY, z) = (x, z) + A (v, z) 

(x, y) = (y, x) 

x ;t: 0 ~ (x, x) ;t: Q 

REMARK. The reader may think of a complex Hilbert space. Notice,.that if (', .J 
is continuous on finite dimensional subspaces, then the sesquilinear fonn is either 
positive or negative definite, and hence, up to a change of the sign if necessary, an 
inner product: to see this consider the real function A I~ (AY + (1 - A) x, 
AY + (1 - A) x). However, we will not assume this additional property. 

Let F : L => D (F) ~ L be a linear (bounded or unbounded) operator, where the 
domain D (F) of F is a. linear subspace of L. F is supposed to be symmetric, i.e. 
(Fx, y) = (x, Fy) holds for all x, Y E D (F). By considering (Fx, x), it follows as usual 
that the eigenvalues of F are real. Moreover, two eigenvectors x and Y belonging to 
two distinct eigenvalues are orthogonal with respect to the given sesquilinear form, 
i.e. (x, y) = 0; in multidimensional eigenspaces we will always choose an orthogonal 
basis. 

REMARK. If F is positive with respect to (', -), i.e. (Fx, x) ~ 0 for all xED (F), 
and if (', .) is positive, i.e. (x, x) ~ 0 for all x E L, then the eigenvalues of F are 
positive real numbers. But this is not assumed in the sequel. 

Now, let {Y;};eNo be a sequence of normed eigenvectors of F such that either 

or 

(ii) (yj, Yj) = 0 for Yi;t: Yj and Yi = Yj <:::) i = j (mod n) for a giY,en n E N. 

(With the second case we take care of the finite dimensional situation.) For i E No let 

Ai denote the eigenvalue to Y;, i.e. FYi = A;Yi' Let A = span {Yi : i E No} be the linear 
subspace of all finite linear combinations of eigenvectors Yi. 
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Suppose that there exist polynomials p. q such that 

(1) q (Ai):;t: 0 for all i E No, 

(2) Ai+ 1 q (Ai) = p (Ai) for all i E No· 

Finally, let {(Xj}ieNo and {~;}ieNo be sequences of complex numbers, which in case 

(ii) are supposed to satisfy (Xi = (Xj <=> i = j (mod n) and ~i = ~j <=> i = j (mod n). 

THEOREM 1. With the notations above the following is true: There exists a linear 
operator S : A -t A such that 

(a) SYi = (Xi+l Yi+l for all i E No· 

(b) FSq (F) = Sp (F) on A. 

(c) Ifl (Xi 1= 1 for all i E No. then S is an isometry . 

. (d) S is nilpotent if, 

- in case (i), 3 (Xk = 01\ 3 n : '\Ii «Xi = 0 => min U> i : (Xj = O} < i + n). 

- in case (ii), at least one (Xi = O. 

Furthermore there exists a linear operator T : A ~ A such that 

{
o in case (i), 

(e) TYi+l = ~i+l Yifor all i E No and Tyo = 
~Yn-l in case (ii), 

(f) Yi is an eigenvector of TS to eigenvalue (Xi+l~i+l for all i E No- Yi is an 
eigenvector of ST to eigenvalue (Xi~i for all i;::: 1 and in case (ii) ·also for 

i =0. 

(g) Sand T are adjoint in the sense that (Sx, y) = (x, Ty) holds on A provided 
(Xi = ~ifor all i E No. 

PROOF. Define S : A. -t A as 

S: L CiYi I~ L ci(Xi+lYi+l· (4) 

Notice that Yi:;t: Yj => (y;. Yj) = 0, and hence that S is well defined. (a), (c) and (d) 

follow immediately. Because of the linearity, it is sufficient to show (b) for all Yi : 

FSq (F) Yi = FSq (Ai) Yi 

= q (Ai) F(Xi+lYi+l 
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= P (Ai) ai+IYi+l 

= P (Ai) SYi = Sp (F) Yi . 

The operator T: A ~ A is defined by 

where we set Y-l := 0 in case (i) and Y-l := Yn-l in case (ii) respectively. Then (t) and 

(g) follow by simple calculation. 

REMARK. If L is a Hilbert space we have for (4) explicitly 

S 
~(Y'Yn) 

Y = ..t.J 2 an+ lY,,+ 1· 
lIy,,1I 

(5) 

Note that for YEA only finitely many terms in the sum are non-zero. If S is bounded 
then (5) defines the continuous closure of S on A. Moreover if the inner product on 

the Hilbert space L = L 
2 

(0, dJ!), ncR", is given by 

then (5) is just 

with akemel 

(f, g ) = 1 fg d~ 
o 

Sy (x) = 10 G (x, z) Y (z) dJ! (z) 

G ( ) 
~ Yi (z) Yi+l (x) 

x, Z =..t.J 2 ai+l 
IIYi II 

(6) 

provided the an respect a suitable growth condition such that summation and 

integration commute. All this is of course true without most of the assumptions made 
for Theorem 1, in fact, only an orthogonal base of eigenvectors Yi has to be given. 

Now we consider an inverse form of Theorem 1: 

Let {Aj}iedI=NoorI={1,2,···.m}) be the set of eigenvalues of F (F as 
above) and let Yi denote the eigenspace to Ai' Let A = span {Yi : i E I}.' 
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THEOREM 2. With the above notations the following holds: if p and q are 
polynomials such that q does not vanish in eigenvalues of F and if 

FSq (F) = Sp (F) 

holds on A for ,,some linear operator S : A ~ A then there exist linear subspaces 
Aj = span { Yk : k E Ij} of A. such that A = Xj Aj and 

S IAj:Aj~Ajforalij. 
Furthermore, if Y K C Aj then there holds S (Yk) C Y mfor Ym C Aj with 

(7) 

provided S (Yk):;: O. 

A 

Figure 1. Interpretation. Suppose for the moment that all eigenspaces Yk are one-dimensional. Then, 
picking up YI4 * 0 in YI4 we see that itemted application of S generates an infinte sequence 
Yi+1 := SYi e Yi+1 of eigenfunctions whose eigenvalues are given by (7). 

The following figure shows a typical situation: 

PROOF. For y E YK we have q (A.k) F (Sy) = p (A.k) (Sy). Thus, if Sy:;: 0, Sy is an 
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eigenvector to the eigenvalue p «~k) and hence Sy E Ym for some m only depending 
q I\.k) 

on k. We say then, that Yk and Ym are in relation. The transitive hull of this relation is 
an equivalence relation with equivalence classes {Yj: i E Ij}. Thus the assertions 
follow. 

REMARK. Most of the theory remains valid for an arbitrary linear operator F in a 
nonned vector space L without a sesquilinear form (just replace orthogonality by 
linear independence). Since the theorems do not require a lot of structure the tield of 
application is wide open. Notice also that the assertions are purely algebraic such that 
every topological aspect will depend on the concrete problem one works with. On the 
other hand we will see in the application below that this low level tool may be very 
useful in practice. 

3. Examples 

Let us review some familiar examples in the light of the previous section. 

3.1 The Laguerre Polynomials 

Let H denote the Hilbert space L2 ([0,00 [; e -x dx). Consider the differential 
operator 

F := -D (xD) + xD 

defined on 

D (F) := {y E COO ([0, 00 [: 3c, Il, I y" (x) I < c + x" on [0, oo[} c H 

with values in H. An easy calculation shows that F is symmetric and positive (aRd of 
course F is not bounded). If we define the operator S on D (F) with values in H by 

we have 

Sy (x) := y (x) - r y (~) d~ 
o 

FS-SF=S (8) 

on D (F). The first eigenvahte of F is Ao = ° with eigenfunction)'1 (x) = 1. Observing 
(8) we choose p (x) = I + x and q (x) ::; 1 and obtain, by applying Theorem 2, an 
infinite sequence of orthogonal eigenfunctions )'11+1 = SYII with eigenvalues 

An+ I = p (All) / q (An) = An + 1 = Il + 1. One can check that the spectrum of F in fact is 
N u {OJ and that no other eigenfunctions of F exist. The Yn are known as the 
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Laguerre polynomials and form an orthogonal base of H. 

REMARK. The operator T: D (F) c H ~ H defined as 

Ty (x) := JX /~ y' (~) d~ 
o 

satisfies FT - TF = -Ton D (F). Thus with p (x) = -1 + x and q (x) = I we conclude 
by Theorem 2 that T : Yn+ 1 I~ JlII+ IYII' And in fact, JlII '¢ 0 for all n > 0 and Jlo = O. 

3.2 The Vibrating String 

The vibrating string is described by 

-Y" = AY on [0, 1tl (9) 

Y (0) = Y (1t) = O. (10) 

This is the eigenvalue problem for the unbounded symmetric differential operator 

F = _D
2 

defined on the Sobolev space D (F) = Fif/ ([0. 1tl) c L 
2 

([0, 1tl) =: H with 

values in H. Of course, the eigenfunctions of Fare' YII = sin (nx) with eigenvalues 

An = n
2

, n E N. Here the uniquely determined operator S which maps ),,, to )',,+J is 

most easily described in terms of the Fourier transfonn :J: 

1": L2 ([0, 1t]) ~ /2 

fl~ (a"),,eN 

with 

2 J1t a" = - f (x) sin (nx) dx 
1t 0 

and 

-I 2 2 1" : / ~ L ([0,1tl) 

(an)neN I~ f(x) = L an sin (nx). 
II~I 

Let s: r ~ r be the right shift operator, i.e. (sa)n:= an-I for n> 1 and (sa» = O. 
Then 
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or .explicitly 

-I 
S:= 1" s:J, 

Sy (x) = 1 L J 1t Y (t) sin (nt) sin «n + I) x) dt, 
1tn~IO 

which is essentially (5). (Note that since S is here an isometry the closure of S in H is 
well defined.) Another way to describe S is based on the elementary formula 
sin «n + 1) x) = sin (nx) cos (x) + cos (nx) sin (x) and the fact that sin and cos are 
conjugate harmonic functions which allows to express one in terms of the other by 
using Poisson's formula. In fact one obtains 

1 J21t t - x 
cos (nx) = "fi1t pV 0 sin (nt) cot (-2-) dt 

(PV denotes the principle value of the singular integral) such that we can define 

s{ff J21t t-x Sy (x) = y (x) cos (x) + 21t pV 0 Y (t) cot (-2-) dt. 

Given this operator, one verifies easily that 

FS - 2SFS+SF= ki 
with k = 2 holds, and that SYI = Y2. Thus. by an obvious modification of Theorem 2, 
we recover that 

An+1 - 2AIl + An-I = k. 

3.3 Mixed Arithmetic Sequences as Eigenvalues 

We consider the operator 

._ 2 k x 2:1 
(

22 ) 
F .- -D + 16 - x 2 I, 

where I denotes the identity, and where k > 0 and 'Y S i are fixed real constants. (For 

a physical interpretation of this operator see [4].) D denotes the distributional 
derivative and x is the independent variable. The spaces are chosen to be as follows: 

2 r 2 r 
F : D (F) c L (R, I x I dx) ~ L (R. I x I dx):= H 
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with 

D (F) := {Ie Il,2 (R, I x ( dx) I x±2 Ie L2 (R, I xl' dx), xf' e L2 (R, I xl' dx)}. 

The weight r ~ 0 is chosen below. Furthennore, we define the operators 
S: D(F) cH~Hand T: D(F) cH ~Hby 

S=D --xD+ _+!::1 __ 1 2 k (ii 2 k) 
2 16 x2 4 

_ 2! kx '£t ! 
(

22 ) 
T - D + 2 xD + 16 + x2 + 4 I. 

It is easy to verify that 

FS-SF=kS 

FT-TF=-kT 

on D (F) in the sense of distributions. By Theorem 2 it follows that S is a raising and 
T a lowering operator. Since F is a positive operator, the eigenvalues of F are non
negative and hence, if there exists an eigenvalue at all, there must be one, say Yo, 
which satisfies Tyo = O. Adding the two equations Fyo = AoYo aqd Tyo = 0 gives: 

- XYo' + ~ + - - "-0 Yo = 0 k (k2 2 k J 
2 8 4 

and hence 

y' 0 kx k - 4"-0 
--=-+---

Yo 4 2kx' 

This differential equation is easily integrated, the solution is (fonnally) 

2 
k-4~) k 

yo=x 2k e 8. 

Writing Fyo = AoYo explicitly, we find the following quadratic equation for Ao: 

2 k
2 

AO - kAo + 16 (3 + 8y) = O. 
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Solving this yields 

k Ao,i ="4 (2 ± ~l - 8y), 

with i = 1, 2. So, fonnally, we have the following two eigenfunctions of F: 

() -10/ ~ (l±V1-8y) /2 
Yo,; x =e x . 

If we choose r> 2 + ~ 1 - 8y, it follows that these functions belong to D (F). It is easy 

to see that Yj,; := i yO,; ::I: 0, j e N, i = 1, 2, belong to D (F) and are of the form YO,; Pj' 

where Pj are polynomials of increasing degree. Hence, by Theorem 2, we have two 

mixed arithmetic sequences of eigenvalues: 

'Aj,; = Ao,i + jk, j e N, i = 1, 2. 

(Notice, that 1..0,1 - 1..0,2 may be a multiple of k and hence that multiple eigenvalues 

are possible.) 

REMARK. The ground state eigenvalue can alternatively be obtained from the 
relation 

_..2_ ~ 1 2 
ST - F kF + (16 + 2) k J 

by applying it to Yo. This immediately yields the quadratic equation for 1..0. In the 

very same way it is possible to deal with raising and lowering operators of higher 
order. This leads to higher order equations for the ground state eigenvalue, and hence 
to the mixing of more then two arithmetic sequences in the spectrum. 

3.4 Connection to partial Differential Equations 

Suppose F:= a (x) D2 + b (x) D + c (x) is defined on D (F) = m,2 (J) with 

values in L 
2 

(J), where 1 c R is a closed interval and a, b, c are given smooth 
functions on I. Suppose that S is given on D (F) by 

Sj(x) := f j(s) g (s, x) ds 
I 

for a kernel g satisfying g (x. y) = ° whenever x e al or Y e aI, and that 

FS-SF=kS 

holds on D (F) for a constant k > 0. Expanding (11), we obtain 

(11) 
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0= J f(s) «-k + c (x) - c (s)) g (s, x) + b (x) gx (s, x) + a (x) gxx (s, x)) ds 
I 

-J b (s) g (s, x)f' (s) ds - J a (s) g (s, x)f" (s) ds 
I I 

= J.f(.~) -a a (b (s) g (s. x» ds 
I S 

a2 

:: J .f(s) 2 (a (s) g (s. x» ds 
I as 

for all f E H(/ (I). Hence, it is equivalent to (11), that g E Iio·2 
(/ x I) is a nontrivial 

solution of the following partial differential equation 

0= (-k + c (x) - c (s) + b' (s) - a" (s)) g (s, x) + b (x) gx (s, x) + 

+ a (x) gxx (s, x) + (b (s) - 2a' (s)) Kli (s, x) - a (s) Klis (s, x) on I x I. 

In other words: If g is a solution of the previous two dimensional eigenvalue 
problem, then the integral transformation S with kernel g is a raising operator for the 

-- one dimensional eigenvalue problem for the operator F. 
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