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A selfdual generalization of the Theorems

of Pascal and Brianchon

NORBERT HUNGERBÜHLER1 AND CLEMENS POHLE2

ABSTRACT. We introduce the technique of polarization in the context of projective incidence geometry. It is
discussed how to obtain new incidence results by polarizing known theorems. The approach leads to a selfdual
theorem which contains as special cases both Pascal’s and Brianchon’s theorem. As corollaries, we find gener-
alizations of both theorems. A similar technique, regularization, is used to find a generalization of de La Hire’s
fundamental theorem of polarity.

1. INTRODUCTION

A tangent p to a conic E with point of tangency P is at the same time the polar line of
P with respect to E. Stated the other way round, a polar line p with respect to a conic E

of a point P is a generalization of a tangent with point of tangency P . Following this line
of thought we investigate in this paper the following scheme: Suppose we find in a geo-
metric configuration a tangent p to a conic E with point of tangency P . Then we replace
the pair tangent/point of tangency by a pair polar line/pole and investigate the geometric
properties of the situation thus modified.

Definition 1.1. Formally, when we substitute the pair of words tangent/point of tangency by

the pair polar line/pole in an incidence statement, we call this manipulation polarizing the
statement.

In general, the polarized form of a true incidence statement is not automatically true.
Interestingly, however, there are such cases. We begin below by showing that the polar-
ization of the Nobbs-Gergonne theorem yields the theorem of Chasles. In the subsequent
sections we will present examples where polarizing known theorems yields new results.

So, let us first illustrate the idea of polarization by starting with a projective version of
the Nobbs-Gergonne theorem (see [9]):

Theorem 1.1. Let → = ABC be a triangle with sides a, b, c, and E a conic inscribed in →. The

points of tangency of E on the sides a, b, c are denoted by A
→
, B

→
, C

→
(see Figure 1). Then the lines

AA
→
, BB

→
and CC

→
are concurrent and meet in the Gergonne point G. Let A

→→
be the intersection

of a with B
→
C

→
, B

→→
the intersection of b with C

→
A

→
, and C

→→
be the intersection of c with A

→
B

→
.

Then the Nobbs points A
→→
, B

→→
and C

→→
are collinear and lie on the Gergonne line g which is the

polar line of the Gergonne point G with respect to E and at the same time the trilinear polar of G.

Polarizing Theorem 1.1, i.e., replacing tangent/point of tangency by polar line/pole in the
statement, we actually get the well known Theorem of Chasles (see [2, Theorem 5·61]).
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FIGURE 1. Projective version of the Nobbs-Gergonne theorem

Theorem 1.2. A triangle → = ABC with sides a, b, c and its polar triangle →→ = A
→
B

→
C

→
with

sides a
→
, b

→
, c

→
with respect to a conic E are Desargues triangles: The lines AA

→
, BB

→
, CC

→
meet in

a point G, and the intersections A
→→

of a and a
→
, B

→→
of b and b

→
, and C

→→
of c and c

→
lie on a line g

(see Figure 2). The line g is the polar line of G with respect to E.

For completeness we note that Chasles’s theorem has a converse, namely von Staudt’s
theorem which says that any pair of Desargues triangles are polar triangles with respect
to a conic (see [12, p. 135, §241]).
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FIGURE 2. Chasles’s theorem

Another example where polarization was used to get new incidence results was dis-
cussed in [7], where a generalization of the Steinbart theorem was proved.
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2. GENERALIZING PASCAL’S THEOREM AND BRIANCHON’S THEOREM
BY POLARIZATION

We will now illustrate that new results can be obtained from known theorems by for-
mally applying the polarization procedure. To put this idea into action, we first need to set
up a few tools, namely the Theorems 2.3 and 2.4. First, we recall de La Hire’s fundamental
theorem of polar theory (see [8]).

Theorem 2.3 (de La Hire). Let E be a conic. Then the polar lines p of the points P on a line

c with respect to E pass through the pole C of the line c with respect to E. Stated differently: A

point P
→

lies on the polar of point P iff P lies on the polar of P
→
.

In analogy to a triangle and its polar triangle we shall say that a hexagon H2 is the polar
hexagon of another hexagon H1 with respect to a conic E if the vertices of H2 are the poles
of H1 with respect to E. By Theorem 2.3, H2 is the polar hexagon of H1 iff H1 is the polar
hexagon of H2, so we can just say that H1 and H2 are polar hexagons with respect to E.

The following theorem contains the theorems of Pascal (see [2, Theorem 7·21] and The-
orem 2.7 below) and Brianchon (see [2, Theorem 7·22] and Theorem 2.5 below) and their
respective converse. It has the additional nice feature that it is selfdual.

Theorem 2.4. Let H1 and H2 be polar hexagons with respect to a conic E. Then the diagonals of

H1 are concurrent iff H1 is circumscribed around a conic C iff the intersections of opposite sides

of H2 are collinear iff H2 is inscribed in a conic D.

We will see in Section 3 that the conics C and D are conjugate with respect to the conic
E.

Proof of Theorem 2.4. Let P1, P2, . . . , P6 denote the vertices of H1. Then the sides of H2 are
the polar lines p1, p2, . . . , p6 of these vertices with respect to E. Let Qi be the intersection
of the opposite sides pi and pi+3 of H2 for i = 1, 2, 3. Then the diagonal PiPi+3 of H1 is the
polar line of Qi with respect to E. It follows from Theorem 2.3 that Q1, Q2, Q3 are collinear
on a line h iff the corresponding polar lines P1P4, P2P5, P3P6 are concurrent in the pole
H of h. The remaining equivalences follow directly from Pascal’s theorem, its converse
(the Braikenridge-Maclaurin theorem, see, e.g., [4, p. 76]) and Brianchon’s theorem and its
converse (see, e.g., [4, p. 78]). ↭

Generalizing the first part of the above proof we find as a byproduct:

Proposition 2.1. Let H1 and H2 be polar polygons with respect to a conic E with an even number

of vertices. Then the diagonals of H1, connecting opposite vertices, are concurrent iff the intersec-

tions of opposite sides of H2 are collinear.

Let uns now turn our attention to Brianchon’s theorem (see [2, Theorem 7·22]).

Theorem 2.5 (Brianchon). Let p1, p2, . . . , p6 be tangent lines of a conic E with points of tan-

gency P1, P2, . . . , P6. Then the extended diagonals of the hexagon formed by the tangent lines,

each connecting opposite vertices, intersect at the Brianchon point B (see Figure 3).

The Nobbs-Gergonne Theorem 1.1 can be viewed as a degenerate case of Brianchon’s
Theorem 2.5, namely when each two adjacent contact points of the hexagon with the conic
coincide. On the other hand, Chasles’s Theorem 1.2 was the polarized form of the Nobbs-
Gergonne Theorem 1.1. Now, what is the polarized form of Brianchon’s theorem? If
we formally replace tangent/point of tangency by polar line/pole in Theorem 2.5 we get the
following theorem.
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FIGURE 3. Brianchon’s theorem

Theorem 2.6 (Polarized Brianchon). Let P1, P2, . . . , P6 be points on a conic C and p1, p2, . . . , p6

be the polar lines of these points with respect to a conic E. Then the extended diagonals of the

hexagon formed by these polar lines, each connecting opposite vertices, are concurrent (see Fig-

ure 4).
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FIGURE 4. Polarized Brianchon theorem

Proof. The points P1, P2, . . . , P6 form a hexagon inscribed in the conic C. Hence, by Pas-
cal’s theorem, the intersections of opposite sides are collinear. By de La Hire’s Theorem 2.3
the intersection of pi and pi+1 is the pole of the line through Pi and Pi+1 with respect to
the conic E. Hence the polygons P1, . . . , P6 and p1, . . . , p6 are polar to each other with
respect to E. Thus the claim follows directly by Theorem 2.4. ↭
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Note that Theorem 2.6 contains Brianchon’s Theorem 2.5, namely if the conics E and C

coincide.
Also note that by Theorem 2.3 the polar line of the intersection of opposite sides pi

and pi+3 with respect to E is the line through Pi and Pi+3. Similarly, the polar line of the
intersection of the line through Pi and Pi+1 and through Pi+3 and Pi+4 with respect to
E passes through the intersection of pi and pi+1 and through the intersection of pi+3 and
pi+4.

Pascal’s hexagon theorem (see [2, Theorem 7·21]) is the dual of Brianchon’s theorem.

Theorem 2.7 (Pascal). Let P1, P2, . . . , P6 be points of a conic E. Then the intersections of oppo-

site sides of the hexagon P1P2P3P4P5P6 are collinear on the Pascal line p (see Figure 5).

E
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P4

P3

P2

p

FIGURE 5. Pascal’s hexagon theorem

The dual of the polarized Brianchon Theorem 2.6 is the polarized Pascal theorem:

Theorem 2.8 (Polarized Pascal). Let p1, p2, . . . , p6 be tangent lines of a conic C and P1, P2, . . . ,

P6 be the poles of these lines with respect to a conic E. Then the intersections of opposite sides of

this hexagon are collinear and lie on a line p (see Figure 6).

Proof. The claim follows from Theorem 2.6 by dualizing the statement. Alternatively we
can again argue with Theorem 2.4: The hexagon formed by the lines p1, p2, . . . , p6 are
circumscribed around the conic C. Hence, by Brianchon’s theorem, the diagonals con-
necting opposite vertices are concurrent. Then the claim follows indeed directly from
Theorem 2.4. ↭

Theorem 2.8 contains Pascals hexagon theorem, namely if C and E coincide. Also note
that, again by Theorem 2.3, the polar line of the intersection of pi and pi+1 with respect to
E passes through Pi and Pi+1. Similarly, the pole of the line joining the intersection of pi
and pi+1 and the intersection of pi+3 and pi+4 with respect to E is the intersection of the
lines through Pi and Pi+1 and through Pi+3 and Pi+4.

We note the following additional property.
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FIGURE 6. Polarized Pascal theorem

Proposition 2.2. Let H1 and H2 be polar hexagons with respect to a conic E. If the diagonals of

H1 meet in a point H and hence the opposite sides of H2 meet on a line h, then h ist the polar line

of H with respect to E.

Proof. We can just repeat the first part of the proof of Theorem 2.4. ↭
Summarizing, we see that Theorem 2.4 can be viewed as an amalgamated version of

Theorem 2.6 and Theorem 2.8 to one single, selfdual theorem which contains the classical
theorems of Brianchon and Pascal.

3. A GENERALIZED VERSION OF DE LA HIRE’S THEOREM

Formal manipulations of statements such as dualization have a long tradition in math-
ematics. Michael Atiyah expressed it this way: Duality in mathematics is not a theorem,

but a “principle” (see [1]). Especially in projective geometry dualization is a powerful tool
(see [3]). Let us now look at another formal manipulation of statements that can lead to
new results in projective geometry. Consider Pappus’s theorem (see [2, Theorem 4·31]):

Theorem 3.9 (Pappus). Let g, h be two straight lines in the projective plane and P1, . . . , P6 be

a hexagon where the vertices lie alternately on g and h. Then the intersections of opposite sides of

the hexagon are collinear.

Pascal was only 16 years old when noticed in his Essay pour les coniques, 1639, that this
theorem remains true if he replaced the degenerate conic consisting of the lines g and h by
a regular conic. This led him to what became known as Pascal’s hexagon theorem (see [10,
p. 243–260] and Theorem 2.7 above). We could call this process of replacing in a statement
a degenerate conic by a regular one, regularization of the statement. Let us see, if other
theorems can be regularized in this way. E.g., by regularizing the Scissors theorem we
get the Butterfly theorem (see [6]). This idea also works perfectly well if we consider de
La Hire’s Theorem 2.3. Namely, if we replace in Theorem 2.3 the line c (considered as a
degenerate conic) by a regular conic C

→, we get:
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Theorem 3.10. Let C
→

and E be conics. Then there is a unique conic C, called the conjugate conic

of C
→

with respect to E, which has the following property: The polar line p
→

of any point P
→ ↑ C

→

with respect to E is tangent to C. Vice versa, if P ↑ C is the point of tangency on p
→
, then the polar

line p of P with respect to E is tangent to C
→

in point P
→
. In particular, this relation is symmetric,

i.e., C is the conjugate of C
→

with respect to E iff C
→

is the conjugate conic of C with respect to E

(see Figure 7).

De La Hire’s Theorem 2.3 can indeed be viewed as a degenerate case of Theorem 3.10,
namely if the conic C degenerates to a point and the conjugate conic C

→ degenerates to a
line (see the Remark after Definition 1.6 in [5]).

E

C

C→

P →

p→

P
p

FIGURE 7. Illustration of Theorem 3.10: When the point P → moves along
the conic C

→, its polar line p
→ with respect to E is tangent to C in a point

P . Vice versa, the polar line p of P with respect to E is tangent to C
→ in

point P →.

Proof of Theorem 3.10. We first give a geometric proof based on Theorem 2.4 and then add
an algebraic proof, which gives some additional insight.

Choose five fixed points C
→
1, C

→
2, C

→
3, C

→
4, C

→
5 on C

→. Let c→1, c→2, c→3, c→4, c→5 be the polar lines
of these five points with respect to E. These five polar lines define a unique conic section
C which they all touch simultaneously. Now let P → be a further point on C

→ and p
→ the

corresponding polar line. The points C
→
1, C

→
2, C

→
3, C

→
4, C

→
5 and P

→ all lie on C
→, so it follows

from Theorem 2.4 that the polar lines c→1, c→2, c→3, c→4, c→5 and p
→ are tangents to a conic section.

But this must be the conic section C, consequently p
→ is a tangent to C. Let P be the point

where p→ touches the conic section C. We consider the polar line p of this point with respect
to E. Since P lies on p

→, p passes through P
→. We have to show that p is the tangent to C

→

at the point P →. Let us assume that this is not the case. Then there is a second intersection
point R→ of p and C

→. Since R
→ lies on C

→, the polar r→ of R→ is a tangent to C (use the same
argument as above for the polar line p

→). At the same time r
→ passes through P , since R

→

lies on p. r→ is therefore a tangent to C and passes through the point P on C from which
it follows that r→ must be the tangent to C at the point P . Because of the uniqueness of
the tangent, and since p

→ is tangent to C in P , we conclude r
→ = p

→, which in turn means
R

→ = P
→. This contradicts the assumption. Consequently, p is indeed the tangent to C

→ at
the point P →.

An algebraic proof uses projective coordinates in the projective plane RP 2. In this
framework, a conic is given by an equation ↓P,CP ↔ = 0, where C is a regular symmetric
3 ↗ 3 matrix with mixed signature (see [5]). In the following we identify a conic with the
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corresponding matrix. So let P → be a point on the conic C →. The polar of P → with respect to
E is p→ = EP

→. We claim that the conjugate conic C of C → with respect to E is given by the
matrix C = EC

→↑1
E. Indeed, p→ is tangent to C since the pole C

↑1
p
→ of p→ with respect to

E is incident with p
→:

↓C↑1
p
→
, p

→↔ = ↓(E↑1
C

→
E

↑1)p→, p→↔ = ↓E↑1
C

→
P

→
, EP

→↔ = ↓C →
P

→
, P

→↔ = 0.

Hence the point of tangency is P
→ = C

↑1
p
→ = E

↑1
C

→
P

→. Obviously, C = EC
→↑1

E is
equivalent to C

→ = EC
↑1

E. Note also, that C is symmetric, regular and has, by Sylvester’s
law of inertia (see [11]), mixed signature. ↭

4. CONCLUSIONS

In self-dual projective planes, a true incidence statement is transformed through dual-
ization into another true incidence statement. Dualization is done by formally exchang-
ing the terms “point” and “straight line” (along with any necessary grammatical adjust-
ments). Here we propose a similar formal manipulation of incidence statements: polar-
ization. The terms “tangent” and “point of contact” are replaced by the terms “polar”
and “pole”. This transformation does not necessarily result in true incidence statements
again. However we show in several examples that polarization can lead to interesting
new results, and old results appear in a new light. In a similar technique, regularization,
a double line or a pair of lines is regarded as a degenerate conic section and formally
replaced by a non-degenerate conic section in an incidence statement. We use examples
to show that in this process, similar to polarization, new incidence results can arise from
known incidence results. It is to be expected that the proposed techniques, polarization
and regularization, will also provide new results in other cases.
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