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Abstract: We consider the following variant of the round-robin scheduling problem: 2n people play
a number of rounds in which two opposing teams of n players are reassembled in each round. Each
two players should play at least once in the same team, and each two players should play at least once
in opposing teams. We provide an explicit formula for calculating the minimal numbers of rounds
needed to satisfy both conditions. Moreover, we also show how one can construct the corresponding
playing schedules.
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1. Introduction

1.1. Description of the Problem

Scheduling problems for sports tournaments are a broad and extensively researched field in com-
binatorics, operations research and combinatorial optimization. A prominent example is the round-
robin tournament problem with applications, e.g., in computer science (see, e.g., [1–7] to mention just
some of the most recent work on the subject). Another one is the traveling tournament problem (see,
e.g., [8–10]). In this article we will study a variant where not fixed teams play against each other but
the teams are shuffled in each round of a tournament.

We deal with the following combinatorial problem: suppose 2n people are playing a sports tourna-
ment which consists of different rounds. In each round two new teams of n people are reassembled to
play against each other. We would like to find a playing schedule such that the following conditions
are satisfied:

(s) each two players have been at least once in the same team, and

(o) each two players have played at least once in opposing teams.
The general question is: what is the minimal number fs,o(n) of rounds of the tournament so that the
conditions (s) and (o) are satisfied and what is an optimal playing schedule? We shall give a complete
answer to both questions. The main goal of this paper is to prove the following result:

Theorem 1. Let n → N, n ↑ 2, then we have

fs,o(n) =



↓log2(n)↔ + 3 if n = 2m ↗ 1,
↓log2(n)↔ + 2 otherwise.
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An intriguing feature of the problem is that the sequence is not monotone.
The paper is organized as follows. We start by considering the conditions (s) in Section 2 and (o)

in Section 3 separately. The combined problem of finding an optimal playing schedule satisfying both
conditions (s) and (o) is treated in Section 4. In particular, this section will contain the proof of the
main Theorem 1. But first, we fix some notation and notions that we will use in the sequel.

1.2. Notions and Notation

We write S k↘m to denote an array of k rows and m columns with entries si, j → {0, 1} in row i and
column j. If the dimension of the array is clear from the context, we just write S . The columns of
S k↘m are denoted by C j, j = 1, . . . ,m. Two columns are called complementary if their componentwise
sum is 1 modulo 2. We write C for the complementary column of C.

An array S k↘2n is called a playing schedule of length k for 2n players. If each row of S contains n
0’s and n 1’s, it is called a valid playing schedule.

The interpretation is as follows: the entry si, j → {0, 1} means that in game i player j plays in team
si, j. Observe that S satisfies (s) if it does not contain complementary columns, and S satisfies (o) if all
columns are different. A valid playing schedule S is called admissible if it satisfies both conditions,
(s) and (o).

The concept of a playing schedule satisfying the condition (o) is related to the notion of separating
systems which goes back to Rényi [11] (see also Katona [12]).

Definition 1. A separating system on a finite set M is a collection {A1, A2, . . . , Ak} of subsets of M such
that for every pair of distinct elements x, y → M, there exists i → {1, 2, . . . , k} with either x → Ai, y ! Ai

or x ! Ai, y → Ai. Moreover, a covering separating system is a separating system such that M is
the union of the sets Ai. More specifically, we call a covering separating system an (n, k)-covering
separating system if |M| = n and for all i we have |Ai| = k.

We can interpret a playing schedule S of length k for 2n players as a set M = {1, 2, . . . , 2n} and a
collection {A1, A2, . . . , Ak} of subsets of M with |Ai| = n, such that j → Ai if and only if si, j = 1. Then
we clearly have that S satisfies the condition (o) if and only if {A1, A2, . . . , Ak} is a separating system
on M.

Definition 2. Two columns Ci,C j of a playing schedule S k,2n are called equivalent, written Ci ≃ C j, if
Ci = C j or Ci = C j. The cardinality of the equivalence class of Ci in S k,2n is called the characteristic
of the column Ci.

Example 1. Let

S =
(
1 0 1 0
1 1 1 0

)

be a playing schedule, then the columns C1,C3 and C4 are equivalent, and hence the characteristic of
these columns is 3, while the characteristic of C3 is 1.

Definition 3. Let S k↘2n and Et↘2n be two playing schedules. Then we can build a new playing schedule
S ⇐ = S ⇒E with k+t rows by putting the array S on top of E (see Example 2). E is called an extension
of S of length t. If all columns of S ⇐ have characteristic 1, then E is called sufficient. If E is valid
and sufficient, then it is called an admissible extension.

Example 2. Let

S =
(
0 0 1 1
0 0 1 1

)
.

Then

E =
(

1 0 0 1
0 1 0 1

)
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is an admissible extension of S of length 2, and

S ⇐ = S ⇒ E =




0 0 1 1
0 0 1 1
1 0 0 1
0 1 0 1



.

The playing schedule S ⇐ is valid and sufficient and hence admissible.

2. Optimal Playing Schedule for Condition (s)

In this section we neglect condition (o) and consider only condition (s). We will denote by fs(n)
the minimal number of rounds needed to satisfy condition (s). We find:

Theorem 2. For n ↑ 2, fs(n) =




3 if n is even,
4 if n is odd.

Proof. If n is even, then

S =




0 0 . . . 0 0 0 . . . 0 1 1 . . . 1 1 1 . . . 1
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0 1 1 . . . 1
0 0 . . . 0 1 1 . . . 1 1 1 . . . 1 0 0 . . . 0




is a playing schedule satisfying condition (s). Here each of the four subarrays in S contains n
2 columns.

If n is odd, a possible playing schedule has the form

S =




0 0 0 . . . 0 0 0 . . . 0 1 1 . . . 1 1 1 . . . 1 1
0 0 0 . . . 0 1 1 . . . 1 0 0 . . . 0 1 1 . . . 1 1
0 0 0 . . . 0 1 1 . . . 1 1 1 . . . 1 0 0 . . . 0 1
0 0 0 . . . 0 ⇑ ⇑ . . . ⇑ ⇑ ⇑ . . . ⇑ ⇑ ⇑ . . . ⇑ 0




where each of the four big subarrays contained in the middle of S consists of n↗1
2 columns. Each entry

marked with ⇑ can be independently replaced by either 0 or 1 as long as the condition is satisfied that
the last row of S contains the same number of 0’s and 1’s.

It remains to show that no shorter playing schedules exists. To see this, notice first that columns
(and rows) of a playing schedule S which satisfies condition (s) can be permuted and the result is still
a playing schedule which satisfies condition (s). In particular we may assume that the first row of S
has the form (

0 0 . . . 0 1 1 . . . 1
)
.

We now state condition (s) in the following form: for each pair (k, l) with 1 ⇓ k < l ⇓ 2n there is
a j such that s j,k = s j,l. These are

(
2n
2

)
conditions. The first row saturates 2

(
n
2

)
such conditions. So

the remaining rows must satisfy the remaining
(

2n
2

)
↗ 2
(

n
2

)
= n2 conditions. Suppose the second row

consists of n1 zeros and n ↗ n1 ones in the first n columns, and hence n ↗ n1 zeros and n1 ones in the
last n columns. This gives additional 2n1(n ↗ n1) < n2 conditions to the conditions which are already
satisfied by the first row. This implies that S cannot satisfy condition (s) if it has only two rows.

Similarly for the third row of S : It consists of n2 zeros and n ↗ n2 ones in the first n columns, and
hence n ↗ n2 zeros and n2 ones in the last n columns. This provides at most 2n2(n ↗ n2) additional
conditions to the conditions we already have. Observe that

max
0⇓n1,n2⇓n

2n1(n ↗ n1) + 2n2(n ↗ n2) =




n2 if n is even
n2 ↗ 1 if n is odd.

Hence, if n is odd, S cannot satisfy condition (s) if it has only three rows. This completes the proof.
↭
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3. Optimal Playing Schedule for Condition (o)

In this section we neglect condition (s) and consider only condition (o). We denote by fo(n) the
minimal number of rounds required to satisfy condition (o). In the language of separating systems we
need a separating system A1, A2, . . . , Am with minimal m on the set {1, 2, . . . , 2n} such that every set
Ai hat cardinality n. We find the following.

Theorem 3. fo(n) = ↓log2(n)↔ + 1.

Proof. First we show that fo(n) ⇓ ↓log2(n)↔ + 1. For this it is enough to construct a playing schedule
of length m " ↓log2(n)↔ + 1 = ↓log2(2n)↔ for 2n players. Since there exist more than 2n different
columns (note that 2n ⇓ 2↓log2(2n)↔) of length m with entries in {0, 1}, we can find n different columns
having 0 as last entry. Then we define S to be the array which contains all these columns and their
complements. Since all columns in S are different, (o) is satisfied. Moreover S is valid by construction
(see Example 3).

On the other hand, the minimal separating system of a set of 2n elements has at least cardinality
↓log2 n↔ + 1 (see [11]). Indeed, to show the inequality fo(n) ⇓ ↓log2(n)↔ + 1 we argue as follows: A
playing schedule with length strictly smaller than ↓log2(n)↔+1 for 2n players contains at least one pair
of identical columns by the pigeonhole principle. Hence, no such playing schedule satisfies (o). ↭

Example 3. We illustrate the construction of an optimal playing schedule S for n = 11. The gray
subarray is our choice of columns with length 5 (the columns correspond to the binary representation
of the numbers 0, 1, 2, . . . , 10) where the last entry is 0 and the white subarray is the complement of
the grey one. Then S is a playing schedule of minimal length satisfying (o).

S =




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1




.

4. Optimal Playing Schedule for Condition (s) and (o)

To find an optimal playing schedule for 2n players that satisfies both conditions (s) and (o) is
considerably harder than for just one of the two conditions. We start with lower and upper bounds
for the minimal length fs,o(n) for particular values of n. These bounds are improved and extended
gradually, and finally lead to a proof of the main Theorem 1.

4.1. Bounds for fs,o(n)

We clearly have max{ fs(n), fo(n)} ⇓ fs,o(n) ⇓ fs(n) + fo(n) and so we get that

max
{
4 ↗ ωeven(n), ↓log2(n)↔ + 1

 ⇓ fs,o(n) ⇓ ↓log2(n)↔ + 5 ↗ ωeven(n)

for all n → N, n ↑ 2. Here, ωeven(n) = 1 if n is even, and 0 if n is odd. In this section we would like to
improve these bounds.

By using covering separating systems we can estimate k := fs,o(n) from below. Assume that we
have a minimal valid playing schedule S of length k for 2n players. Without loss of generality, we
can assume that player 2n is always in the team 1, i.e., the last column of S consists of 1’s, and the
first n players play against the second n players in the first game. Hence, the first row of S consists
of n 0’s followed by n 1’s. Consider now the collection {A1, · · · , Ak} of subsets of {1, 2 . . . , 2n} where
j → Ai if and only if si, j = 1. Then {A1, · · · , Ak} forms an (2n, n)-covering separating system because
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otherwise S would violate the conditions (s) and/or (o). Hence, by Phanalasy et al. [13, Lemma 5] we
get that k ↑ ⇔log2(n)↖ + 2. If n = 2m for m → N \ {0}, then this estimate coincides with the next result.
In every other case we will find a better lower bound for k.

Proposition 1. For all n → N \ {0, 1} we have fs,o(n) ↑ ↓log2(n)↔ + 2.

Proof. Let k := fs,o(n). Then there exists a playing schedule S with k rows and 2n columns. Since S
is admissible, the columns of S are all different, and no two columns of S are complementary to each
other. There exist 2k different columns of length k. However, only 2k↗1 of these are not complementary
and this number must be larger than or equal to the number of columns in S . Hence, we get 2k↗1 ↑ 2n
which proves the proposition. ↭

Example 4. Consider a playing schedule S for 2n = 4 players. By the inequality 2k↗1 ↑ 2n in the
proof of Proposition 1 where k := fs,o(n), we have that k ↑ 3. In fact, we can find the following valid
and admissible playing schedule for k = 3, and hence fs,o(2) = 3:

S =




0 0 1 1
0 1 0 1
0 1 1 0


 .

4.2. The Case n = 2m

In this section we determine fs,o(n) if n is a power of 2. Moreover, we find an upper bound for
fs,o(n).

Theorem 4. For m → N \ {0} we have fs,o(2m) = m + 2.

To prove this theorem, we need the following lemma:

Lemma 1. For m ↑ 2 we have fs,o(2m) ⇓ fs,o(2m↗1) + 1.

Proof. We show that a valid playing schedule S of length fs,o(2m↗1) for 2m players can be extended to
a valid playing schedule S + of length fs,o(2m↗1) + 1 for 2m+1 players. To do so, we define the columns
of S + by

C+i := Ci ⇒ 0 for 1 ⇓ i ⇓ 2m

C+i := Ci↗2m ⇒ 1 for 2m < i ⇓ 2m+1.

Observe that all columns of S + are different from each other and not complementary to another
column in S +. Hence, S + defines a valid and admissible playing schedule for 2m+1 players. ↭

With this preparation we are ready for the proof of Theorem 4.

Proof of Theorem 4. For m = 1 the statement is true by Example 4. Now we assume that this is the
case for an arbitrary m and show it for m + 1. By using Proposition 1, Lemma 1 and the induction
hypothesis fs,o(2m) = m + 2 we get the desired result

m + 3 = ↓log2(2m+1)↔ + 2 ⇓ fs,o(2m+1) ⇓ fs,o(2m) + 1 = m + 3.

↭

Example 5. Let S be a valid and admissible playing schedule for 4 players of length 3, as in Exam-
ple 4:

S =




0 0 1 1
0 1 0 1
0 1 1 0


 .
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Following the construction in the proof of Lemma 1, we obtain an optimal playing schedule

S + =




0 0 1 1
0 1 0 1
0 1 1 0
0 0 0 0

0 0 1 1
0 1 0 1
0 1 1 0
1 1 1 1




for 8 players.

We will now introduce a helpful tool which we use to prove the upper bound of fs,o(n).

Definition 4. For a column C of a playing schedule, we call the array T (C) consisting of the three
columns C,C,C a triplet of C.

Proposition 2. For all n → N \ {0, 1} we have fs,o(n) ⇓ ↓log2(n)↔ + 3.

Proof. The case n = 2 is verified by Example 4. Therefore let n → N \ {0, 1, 2}, and m → N \ {0} the
unique value such that 2m < n ⇓ 2m+1. Let S be a valid and admissible playing schedule of length m+2
for 2m+1 players (see Theorem 4). We construct a playing schedule S + of length ↓log2(n)↔+ 3 = m+ 4
for 2n players as follows.

For the columns Ci of S with 1 ⇓ i ⇓ n ↗ 2m let T (Ci)+ = T (Ci) ⇒ Ei, where

Ei =

(
1 0 1
0 0 0

)
if i is odd, and Ei =

(
0 1 0
1 1 1

)
if i is even.

Let C+i = Ci ⇒ (⇑⇑) be an extension of the remaining columns Ci of length 2 for n ↗ 2m + 1 ⇓ i ⇓ 2m+1.
Then we define

S + = (T (C1)+,T (C2)+, . . . ,T (Cn↗2m)+,C+n↗2m+1, . . . ,C
+
2m+1).

Observe that S + is admissible because S was admissible. It remains to show that S + is valid. The
first m + 2 rows contain the same number of 0’s and 1’s by construction. Observe, that we used all
columns of S and added pairs of columns and their complements. For the last two rows we choose
the ⇑’s in the C+i as follows. The numbers of triplets in S + and the number of C+i are either both even
or both odd. In the even case the extensions in the C+i must be chosen such the last two rows of the
C+i contain the same number of 0’s and 1’s. In the odd case, there must be one more 0 than 1’s in
the second last row of the C+i , and three 1’s more than 0’s in the last row. The result is a valid and
admissible playing schedule S + of length m + 4 for 2n players. ↭

Example 6. Consider the case n = 3. We start with a valid and admissible playing schedule S for 4
players of length 3:

S =




0 0 1 1
0 1 0 1
0 1 1 0


 .

We have

T (C1) =




0 0 1
0 0 1
0 0 1


 and T (C1)+ =




0 0 1
0 0 1
0 0 1
1 0 1
0 0 0




.

The construction in the proof of Proposition 2 yields S + = (T (C1)+,C+2 ,C
+
3 ,C

+
4 ), where C+2 ,C

+
3 ,C

+
4

are chosen such that S + is valid. A possibility is

S + =




0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0
1 0 1 0 0 1
0 0 0 1 1 1




.
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With Proposition 1 and Proposition 2 we conclude:

Corollary 1. For all n → N \ {0, 1} we have

↓log2(n)↔ + 2 ⇓ fs,o(n) ⇓ ↓log2(n)↔ + 3.

4.3. The Case n Even

So far we know that for each n → N \ {0, 1} there are only two possible values for fs,o(n). In this
section determine the exact value of fs,o(n) for even n.

Theorem 5. If n → N \ {0, 1} is even, then we have

fs,o(n) = ↓log2(n)↔ + 2.

Proof. We start with an admissible playing schedule for 4 players. For example, we can consider

S :=




0 0 1 1
0 1 1 0
0 1 0 1




with columns C1, . . . ,C4. Since n = 2m, an admissible and valid playing schedule for n consists of
4m players. We define the arrays

S i := (Ci,Ci, . . . ,Ci!!!!!!!!!!!!!!!!!!!!
m times

)

with m columns for i = 1, . . . , 4. The idea is now to find a playing schedule for 2m players of length
↓log2(n)↔ + 2 = ↓log2(m)↔ + 3, of the form

S + =
(

S 1 S 2 S 3 S 4

E E E E

)
.

Here E consists of m different column vectors of length ↓log2(m)↔. Observe that two columns from
different arrays S i are neither the same nor the complement of each other. Hence, S + is a valid and
admissible playing schedule for 2n players. This implies fs,o(n) ⇓ ↓log2(n)↔ + 2 and the result follows
by Corollary 1. ↭

To show fs,o(n) ⇓ ↓log2(n)↔ + 2 if n is even, we can alternatively define a playing schedule in the
following way: Choose n different pairs of columns of length ↓log2(n)↔ + 1 such that the columns in
each pair are complementary. Then define S as the array containing all columns of these pairs such
that the columns of each pair belong either to the first n or to the last n columns of S (note that this
only works if n is even). If we extend S by the row

E =
(

0 0 . . . 0 1 1 . . . 1
)
,

containing n 0’s followed by n 1’s, then S + = S ⇒E is valid and there are no columns in S + which are
equal or the complement of each other. Hence, S + satisfies (o) and (s) and its length is ↓log2(n)↔ + 2
which shows that fs,o(n) ⇓ ↓log2(n)↔ + 2.

4.4. The Case n Odd

The case n odd is more delicate than the case n even. We start with some general considerations.
In the proof of Proposition 2 we had to extend the triplets by an extension of length 2. We now ask, by
how many rows must a given playing schedule be extended in order to obtain an admissible playing
schedule. For this, the characteristic of the columns (see Definitions 2 and 3) plays the decisive role.
More concretely, we find a lower bound for the length of an admissible extension as a function of its
largest characteristic.
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Theorem 6. Let S be a playing schedule, and k be the maximal characteristic of the columns in S .
Then an admissible extension of S has at least length ↓log2(k)↔.

Proof. Let Cu be a column of S with maximal characteristic k, and U the array built from the columns
in the equivalence class of Cu. We show that the minimal length t of an admissible extension E of U
is at least ↓log2(k)↔.

Observe first that the maximal characteristic of the columns of E is ⇓ 2. To see this, assume that
this is not the case. Then there are three equivalent columns in E, say

E j⇐ ≃ E j⇐⇐ ≃ E j⇐⇐⇐

and we have
C⇐j⇐ = C j⇐ ⇒ E j⇐ , C⇐j⇐⇐ = C j⇐⇐ ⇒ E j⇐⇐ , C⇐j⇐⇐⇐ = C j⇐⇐⇐ ⇒ E j⇐⇐⇐ ,

where C j⇐ ≃ C j⇐⇐ ≃ C j⇐⇐⇐ by assumption. Since E is supposed to be sufficient, any two of the vectors
C⇐j⇐ ,C

⇐
j⇐⇐ ,C

⇐
j⇐⇐⇐ are pairwise distinct and pairwise nonequivalent. At least two of the vectors C j⇐ ,C j⇐⇐ ,C j⇐⇐⇐

are equal, say C j⇐ = C j⇐⇐ . It follows that E j⇐ = E j⇐⇐ . But then, in the case C j⇐⇐⇐ = C j⇐ as well as in the
case C j⇐⇐⇐ = C j⇐ , E j⇐⇐⇐ can neither be equal to E j⇐ nor to E j⇐⇐ . So, we have a contradiction.

We know now that the characteristic of the columns in E can be at most 2. On the other hand if E
is an extension of length t, then we find at most 2t↗1 different equivalence classes among the columns
of E. Hence, the number of columns of E must be bounded by k because

2t↗1 · 2 ↑ k

and this completes the proof. ↭

Remark 1. Note that the last inequality becomes an equality if there are exactly 2t↗1 equivalence
classes in the columns of E, and each equivalence class consists of two columns. Also note that the
number of equivalence classes of the columns of E must be at least k

2 .

Example 7. Let

U =
(

0 0 1 1
0 0 1 1

)
.

The maximal characteristic is k = 4, and hence the minimal length of a sufficient extension E of U is
2. For example, we can choose

E =
(

0 1 0 1
0 1 1 0

)

and get

U⇐ =




0 0 1 1
0 0 1 1
0 1 0 1
0 1 1 0



.

In the following we will analyse the structure of the equivalence classes more closely. We only
need to discuss the case when M1 and M2 have the same odd cardinality as we see later.

Theorem 7. Let S be a playing schedule, and [Cu] be the equivalence class of a column of S with
characteristic k > 1. Assume that the sets

M1 := {C j → [Cu] : C j = Cu} and M2 := {C j → [Cu] : C j = Cu}

have odd cardinality q := |M1| = |M2| > 1. Let U be the array built from the columns in [Cu]. Then
the minimal length t of an admissible extension E of U satisfies t ↑ ↓log2(q + 2)↔ + 1.

Ars Combinatoria Volume 158, 81–92



A Variant of the Round-Robin Scheduling Problem 89
In order to prove Theorem 7 we will show that the columns of E must contain at least q + 2

equivalence classes. This is done in the next two lemmas.

Lemma 2. For an admissible extension E of U, the columns of E must contain more than q equiva-
lence classes.

Proof. We have seen in the proof of Theorem 6 that each equivalence class of columns of E contains
at most 2 elements. Hence, the columns of E contain at least q equivalence classes. Assume now
that here are exactly q equivalence classes and work towards a contradiction. In this situation every
equivalence class contains two elements. These two elements are either equal or the complement
of each other. Hence, we can choose representatives E1, E2, . . . , Eq of each equivalence class, and a
natural number 0 ⇓ c ⇓ q such that, after reordering the columns if necessary, we have

E = (E1, E1, E2, E2 . . . , Ec, Ec, Ec+1, Ec+1, . . . , Eq, Eq).

Since the columns of U all belong to the same equivalence class, and U⇐ is admissible by assumption,
there exists a column C in U such that

U = (C,C, . . . ,C,C!!!!!!!!!!!!!!!!!!!!!!
2c columns

, ⇑, . . . , ⇑!!!!
2(q↗c) columns

),

where two consecutive ⇑ are either equal to C or C. However, the number of consecutive pairs of C
and C in U must be the same. Hence, the number of ⇑ in U must be divisible by 4 and so q↗ c is even
and c is odd.

Moreover, since E is valid, we have that E⇐ := (E1, E1, E2, E2 . . . , Ec, Ec) must also be valid and
hence E⇐⇐ := (E1, E2 . . . , Ec) is also valid. However, E⇐⇐ cannot be valid because its number of columns
is c and c is odd. Thus, we get a contradiction. ↭

Lemma 3. For an admissible extension E of U, the columns of E must contain more than q + 1
equivalence classes.

Proof. By Lemma 2 we already know that the columns of E contain at least q+1 equivalence classes.
To obtain a contradiction, assume that they contain exactly q + 1 equivalence classes. Then there are
exactly q ↗ 1 equivalence classes with 2 elements, and 2 equivalence classes with 1 element. Hence,
we can assume that there exists a natural number 0 ⇓ c ⇓ q ↗ 1 such that

E = (E1, E1, E2, E2, . . . , Ec, Ec, Ec+1, Ec+1, . . . , Eq↗1, Eq↗1, Eq, Eq+1)

for a choice of representatives E1, E2, . . . , Eq+1 of all equivalence classes. As in Lemma 2, we find a
column C in U such that

U = (C,C, . . . ,C,C!!!!!!!!!!!!!!!!!!!!!!
2c columns

, ⇑, . . . , ⇑!!!!
2(q↗c) columns

).

Define now
E⇐ := (E1, E1, E2, E2, . . . , Ec, Ec, Ec+1, Ec+1, . . . , Eq↗1, Eq↗1).

Since E is an admissible extension of U, E⇐ is not valid because otherwise (Eq, Eq+1) would also be
valid and so Eq and Eq+1 would be in the same equivalence class which is not the case. Thus,

E⇐⇐ := (E1, E2 . . . , Ec)

cannot be valid. We now consider separately the cases, c even and c odd.
Let c be even. Since E⇐⇐ is not valid, there exists a row such that the difference of 0’s and 1’s in

this row is at least 2. Hence, there is a row in E⇐ such that the difference between the 0’s and 1’s is
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at least 4. Adding the missing two columns with characteristic 1 cannot make this playing schedule
valid. Therefore we have a contradiction.

Let c be odd. Then the difference of 0’s and 1’s in each row of E⇐⇐ must be at least 1, and the
difference of 0’s and 1’s in each row of E⇐ is at least 2. Thus, adding two columns to E⇐ to make it
valid means that the two added columns Eq and Eq+1 must be equal and this is a contradiction because
they do not belong to the same equivalence class by assumption. ↭

Theorem 7 follows now from the lemma above.

Proof of Theorem 7. We showed that the columns of E contain at least q + 2 different equivalence
classes. Then the result follows from the inequality

2t↗1 ↑ q + 2.

↭

Remark 2. For q = 1 it is not possible to find an admissible extension. However, we will now show
that for q > 1 we can construct an admissible extension with q + 2 equivalence classes. This will be
the last building block we need to prove Theorem 1.

Proposition 3. Let S be a playing schedule, and [Cu] be the equivalence class of a column of S with
characteristic k > 1. Assume that the sets

M1 := {C j → [Cu] : C j = Cu} and M2 := {C j → [Cu] : C j = Cu},

have odd cardinality q := |M1| = |M2| > 1. Let U be the array built from the columns in [Cu]. Then
the minimal length t of an admissible extension E of U is t = ↓log2(q + 2)↔ + 1.

Proof. By Lemma 3 it remains to show that an admissible extension E of U exists such that the
columns of E contain exactly q + 2 equivalence classes. Without loss of generality (by renumbering
players), we can assume that U has the form

U = (C, . . . ,C!!!!!!
q times

,C, . . . ,C!!!!!!!!
q times

).

First we consider the case q = 3. Define

E⇑ = (E1, E2, E3, E4, E5, E5) :=




0 1 1 0 1 0
0 1 0 1 1 0
0 0 1 1 0 1
0 1 0 1 0 1



,

and note that E⇑ contains q + 2 = 5 different equivalence classes. It is easy to see that E3 is an
admissible extension of U with length ↓log2(q + 2)↔ + 1 = 4.

Now we assume that q > 3. Let E⇑ be as above. If q = 5, then set E+⇑ = E⇑. Otherwise extend E⇑ to
E+⇑ by adding ↓log2(q + 2)↔ ↗ 3 occurrences of the row (0 0 1 1 0 1). Note that E+⇑ is valid and consists
of ↓log2(q + 2)↔ + 1 rows and 6 columns which belongs to 5 different equivalence classes. The set of
01-sequences of length ↓log2(q + 2)↔ + 1 contains at least q + 2 equivalence classes. Hence, from this
set, we can choose more representatives Di from different equivalence classes such that they are all not
equivalent with the columns in E+⇑ . Now we can define the arrays (Eleft, Eright) := (D1,D2, . . . ,Dq↗3)
where both, Eleft and Eright, have the same dimension. Observe that (Eleft, Eleft) and (Eright, Eright) are
valid playing schedules for q ↗ 3 players. Then, the set

E := (Eleft, Eleft!!!!!!!!
q↗3 columns

, E+3
6 columns

, Eright, Eright!!!!!!!!!!!!!!
q↗3 columns

),

is an admissible extension of U satisfying all the necessary conditions. ↭
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Theorem 1 follows now from Proposition 3.

Proof of Theorem 1. Because of Theorem 5, it remains to treat the case n odd. Consider a valid
playing schedule S of length 1 for 2n players. We would like to construct a minimal admissible and
valid playing schedule S + for the 2n players which extends S . The columns C j of S have length 1,
and all belong to the same equivalence class [(0)].

M1 := {C j : C j = (0)} and M2 := {C j : C j = (1)},

have both cardinality n. Then we can apply Proposition 3 to find a minimal admissible and valid
extension E of S of length ↓log2(n + 2)↔ + 1 for 2n players. The resulting playing schedule S + has
length ↓log2(n + 2)↔ + 2. This finishes the proof. ↭
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