Explicit energy conserving local time stepping for acoustic and electromagnetic wave propagation

Teodora Mitkova

Institute of Mathematics, University of Basel

joint work with: Julien Diaz, Magique 3D, INRIA Futurs Marcus Grote, University of Basel

Teodora Mitkova, University of Basel Schweizer Numerik Kolloquium, April 25, 2008

イロト 不得下 イヨト イヨト 二日

Local Time Stepping for Wave Propagation

Outline:

- Motivation
- Model problems
- The semi-discrete problem
- Global time stepping
- Local time stepping
- Numerical experiments
- Concluding remarks

・ロト ・ 一 ・ ・ ヨ ・ ・ ヨ ・ ・

Motivation

Modern Technology \equiv Acoustic / Electromagnetic Technology

- Electric motors and dynamos
- Antennas / Radar / Sonar
- Laser resonator
- Optical fibers
- Near field scanning optical microscopy (investigation of nano-structures)

KDD Ibaraki Satellite Communication Center

Teodora Mitkova, University of Basel

Num. Meth. for Maxwell Eq., J. Schöberl

Schweizer Numerik Kolloquium, April 25, 2008

Model Problems

Second-order wave equation

$$u_{tt} - \nabla \cdot (c \nabla u) = f \qquad \text{in } (0, T) \times \Omega,$$
$$u = 0 \qquad \text{on } (0, T) \times \partial \Omega,$$
$$u|_{t=0} = u_0 \qquad \text{in } \Omega,$$
$$u_t|_{t=0} = v_0 \qquad \text{in } \Omega.$$

 $\Omega \subset \mathbb{R}^2$ bounded polygon; c(x) > 0

Maxwell's equations in second-order form

$$\begin{split} \varepsilon \mathbf{u}_{tt} + \nabla \times (\mu^{-1} \nabla \times \mathbf{u}) &= \mathbf{f} & \text{in } (0, T) \times \Omega, \\ \mathbf{n} \times \mathbf{u} &= \mathbf{0} & \text{on } (0, T) \times \partial \Omega, \\ \mathbf{u}_{|t=0} &= \mathbf{u}_0 & \text{in } \Omega, \\ \mathbf{u}_t|_{t=0} &= \mathbf{v}_0 & \text{in } \Omega. \end{split}$$

 $\Omega \subset \mathbb{R}^2$ bounded polygon, a non-conducting medium; $\mu(\mathbf{x}), \varepsilon(\mathbf{x}) > 0$

The discretization in space leads to the system of ODE's

$$\mathbf{M}_{\varepsilon} \frac{d^2 \mathbf{U}}{dt^2}(t) + \mathbf{K}_{\mu} \mathbf{U}(t) = \mathbf{F}(t), \qquad t \in (0, T).$$

The stiffness matrix \mathbf{K}_{μ} and the mass matrix \mathbf{M}_{ε} are symmetric positive (semi-)definite. For explicit time integration, \mathbf{M}_{ε} must be (block-)diagonal \Rightarrow computing $\mathbf{M}_{\varepsilon}^{-1}$ or $\mathbf{M}_{\varepsilon}^{-\frac{1}{2}}$ is cheap.

Appropriate discretizations in space

- conforming finite elements + mass-lumping techniques
- low order edge elements + mass-lumping techniques
- interior penalty discontinuous Galerkin formulation

Global Time Stepping

We consider the semi-discrete problem

$$\mathbf{M}_{\varepsilon}\frac{d^2}{dt^2}\mathbf{U} + \mathbf{K}_{\mu}\mathbf{U} = \mathbf{F}$$

and rewrite it as

$$\frac{d^2}{dt^2}\mathbf{Y} + \mathbf{A}\mathbf{Y} = \mathbf{R}$$

where $\mathbf{Y} := \mathbf{M}_{\varepsilon}^{\frac{1}{2}} \mathbf{U}, \, \mathbf{A} := \mathbf{M}_{\varepsilon}^{-\frac{1}{2}} \mathbf{K}_{\mu} \mathbf{M}_{\varepsilon}^{-\frac{1}{2}} \text{ and } \mathbf{R} := \mathbf{M}_{\varepsilon}^{-\frac{1}{2}} \mathbf{F}.$

Teodora Mitkova, University of Basel Schweizer Numerik Kolloquium, April 25, 2008

イロト イボト イヨト イヨト

Global Time Stepping

We consider the semi-discrete problem

$$\mathbf{M}_{\varepsilon}\frac{d^2}{dt^2}\mathbf{U} + \mathbf{K}_{\mu}\mathbf{U} = \mathbf{F}$$

and rewrite it as

$$\frac{d^2}{dt^2}\mathbf{Y} + \mathbf{A}\mathbf{Y} = \mathbf{R}$$

where $\mathbf{Y} := \mathbf{M}_{\varepsilon}^{\frac{1}{2}} \mathbf{U}, \, \mathbf{A} := \mathbf{M}_{\varepsilon}^{-\frac{1}{2}} \mathbf{K}_{\mu} \mathbf{M}_{\varepsilon}^{-\frac{1}{2}} \text{ and } \mathbf{R} := \mathbf{M}_{\varepsilon}^{-\frac{1}{2}} \mathbf{F}.$

The classical leap-frog scheme is given by

$$\mathbf{Y}^{n+1} - 2\mathbf{Y}^n + \mathbf{Y}^{n-1} = \Delta t^2 (\mathbf{R}^n - \mathbf{A}\mathbf{Y}^n).$$

The scheme is stable, under the CFL condition

$$\Delta t \le \alpha_{LF}h, \quad h = \min_{T \in \mathcal{T}_h} h_T.$$

Teodora Mitkova, University of Basel Schweizer Numerik Kolloquium, April 25, 2008

イロト 不得 とくき とくき とうき

The semi-discrete problem can be rewritten as

$$\frac{d^2}{dt^2}\mathbf{Y} + \mathbf{A}\mathbf{Y} = \mathbf{R}.$$

Let us now split ${\bf Y}$ and ${\bf R}$ in two parts

$$\begin{split} \mathbf{Y} &= \left[\begin{array}{c} \mathbf{Y}^{\mathrm{coarse}} \\ \mathbf{0} \end{array} \right] + \left[\begin{array}{c} \mathbf{0} \\ \mathbf{Y}^{\mathrm{fine}} \end{array} \right] = (\mathbf{I} - \mathbf{P})\mathbf{Y} + \mathbf{P}\mathbf{Y}, \ \mathrm{with} \ \mathbf{P}^2 = \mathbf{P}, \\ \mathbf{R} &= \left[\begin{array}{c} \mathbf{R}^{\mathrm{coarse}} \\ \mathbf{0} \end{array} \right] + \left[\begin{array}{c} \mathbf{0} \\ \mathbf{R}^{\mathrm{fine}} \end{array} \right] = (\mathbf{I} - \mathbf{P})\mathbf{R} + \mathbf{P}\mathbf{R}, \ \mathrm{with} \ \mathbf{P}^2 = \mathbf{P}. \end{split}$$

Then, we have

$$\frac{d^2}{dt^2}\mathbf{Y} + \mathbf{A}(\mathbf{I} - \mathbf{P})\mathbf{Y} + \mathbf{A}\mathbf{P}\mathbf{Y} = (\mathbf{I} - \mathbf{P})\mathbf{R} + \mathbf{P}\mathbf{R}.$$

Teodora Mitkova, University of Basel

Schweizer Numerik Kolloquium, April 25, 2008

The semi-discrete problem can be rewritten as

$$\frac{d^2}{dt^2}\mathbf{Y} + \mathbf{A}(\mathbf{I} - \mathbf{P})\mathbf{Y} + \mathbf{A}\mathbf{P}\mathbf{Y} = (\mathbf{I} - \mathbf{P})\mathbf{R} + \mathbf{P}\mathbf{R}.$$

$$\mathbf{Y}(t+\Delta t)-2\mathbf{Y}(t)+\mathbf{Y}(t-\Delta t)=\Delta t^2\int_{-1}^1(1-|artheta|)rac{d^2}{dt^2}\mathbf{Y}(t+artheta\Delta t)dartheta$$

$$= \Delta t^{2} \int_{-1}^{1} (1 - |\vartheta|) \{ (\mathbf{I} - \mathbf{P}) \mathbf{R} (t + \vartheta \Delta t) - \mathbf{A} (\mathbf{I} - \mathbf{P}) \mathbf{Y} (t + \vartheta \Delta t) \} d\vartheta$$

+ $\Delta t^{2} \int_{-1}^{1} (1 - |\vartheta|) \{ \mathbf{P} \mathbf{R} (t + \vartheta \Delta t) - \mathbf{A} \mathbf{P} \mathbf{Y} (t + \vartheta \Delta t) \} d\vartheta$
 $\approx \Delta t^{2} \{ (\mathbf{I} - \mathbf{P}) \mathbf{R} (t) - \mathbf{A} (\mathbf{I} - \mathbf{P}) \mathbf{Y} (t) \}$
+ $\Delta t^{2} \int_{-1}^{1} (1 - |\vartheta|) \{ \mathbf{P} \mathbf{R} (t + \vartheta \Delta t) - \mathbf{A} \mathbf{P} \mathbf{Y} (t + \vartheta \Delta t) \} d\vartheta$

۲ (ع)
 <

$$\begin{split} \mathbf{Y}(t + \Delta t) - 2\mathbf{Y}(t) + \mathbf{Y}(t - \Delta t) &\approx \Delta t^{2} \left\{ (\mathbf{I} - \mathbf{P})\mathbf{R}(t) - \mathbf{A}(\mathbf{I} - \mathbf{P})\mathbf{Y}(t) \right\} \\ &+ \Delta t^{2} \int_{-1}^{1} (1 - |\vartheta|) \left\{ \mathbf{PR}(t + \vartheta \Delta t) - \mathbf{AP}\widetilde{\mathbf{Y}}(\vartheta \Delta t) \right\} d\vartheta \\ \end{split}$$

$$\end{split}$$
Where $\widetilde{\mathbf{Y}}$ is the solution of
$$\begin{aligned} \widetilde{\mathbf{Y}}(0) &= \mathbf{Y}(t) \\ \widetilde{\mathbf{Y}}'(0) &= \mathcal{V} \\ \frac{d^{2}}{d\tau^{2}}\widetilde{\mathbf{Y}}(\tau) &= (\mathbf{I} - \mathbf{P})\mathbf{R}(t) - \mathbf{A}(\mathbf{I} - \mathbf{P})\mathbf{Y}(t) \\ &+ \mathbf{PR}(t + \tau) - \mathbf{AP}\widetilde{\mathbf{Y}}(\tau) \end{aligned}$$

$$\begin{split} \widetilde{\mathbf{Y}}(\Delta t) - 2\widetilde{\mathbf{Y}}(0) + \widetilde{\mathbf{Y}}(-\Delta t) &= \Delta t^2 \left\{ (\mathbf{I} - \mathbf{P})\mathbf{R}(t) - \mathbf{A}(\mathbf{I} - \mathbf{P})\mathbf{Y}(t) \right\} \\ &+ \Delta t^2 \int_{-1}^{1} (1 - |\vartheta|) \left\{ \mathbf{PR}(t + \vartheta \Delta t) - \mathbf{AP}\widetilde{\mathbf{Y}}(\vartheta \Delta t) \right\} d\vartheta \end{split}$$

Teodora Mitkova, University of Basel

Schweizer Numerik Kolloquium, April 25, 2008

 $\mathbf{Y}(t + \Delta t) + \mathbf{Y}(t - \Delta t) \approx \widetilde{\mathbf{Y}}(\Delta t) + \widetilde{\mathbf{Y}}(-\Delta t)$ $\widetilde{\mathbf{Y}}(\Delta t) + \widetilde{\mathbf{Y}}(-\Delta t) \text{ does not depend on the value of } \mathcal{V}, \text{ which can be chosen arbitrarily.}$

$$\mathbf{Q}(\tau) = \widetilde{\mathbf{Y}}(\tau) + \widetilde{\mathbf{Y}}(-\tau)$$

$$\mathbf{Q}(0) = 2\mathbf{Y}(t)$$

$$\mathbf{Q}'(0) = 0$$

$$\frac{d^2}{d\tau^2}\mathbf{Q}(\tau) = 2\{(\mathbf{I} - \mathbf{P})\mathbf{R}(t) - \mathbf{A}(\mathbf{I} - \mathbf{P})\mathbf{Y}(t)\}$$

$$+\mathbf{PR}(t+\tau) + \mathbf{PR}(t-\tau) - \mathbf{APQ}(\tau)$$

$$\mathbf{Q}$$
 is the solution of

$$\mathbf{Y}(t + \Delta t) + \mathbf{Y}(t - \Delta t) \approx \mathbf{Q}(\Delta t)$$

 $\mathbf{Y}(t + \Delta t) + \mathbf{Y}(t - \Delta t) \approx \mathbf{\widetilde{Y}}(\Delta t) + \mathbf{\widetilde{Y}}(-\Delta t)$ $\mathbf{\widetilde{Y}}(\Delta t) + \mathbf{\widetilde{Y}}(-\Delta t) \text{ does not depend on the value of } \mathcal{V}, \text{ which can be chosen arbitrarily.}$

$$\mathbf{Q}(\tau) = \widetilde{\mathbf{Y}}(\tau) + \widetilde{\mathbf{Y}}(-\tau)$$

$$\mathbf{Q}(0) = 2\mathbf{Y}^{n}$$

$$\mathbf{Q}'(0) = 0$$

$$\frac{d^{2}}{d\tau^{2}}\mathbf{Q}(\tau) = 2\{(\mathbf{I} - \mathbf{P})\mathbf{R}^{n} - \mathbf{A}(\mathbf{I} - \mathbf{P})\mathbf{Y}^{n}\}$$

$$+\mathbf{PR}(t_{n} + \tau) + \mathbf{PR}(t_{n} - \tau) - \mathbf{APQ}(\tau)$$

 $\mathbf{Y}^{n+1} + \mathbf{Y}^{n-1} = \mathbf{Q}(\Delta t)$

Teodora Mitkova, University of Basel

Schweizer Numerik Kolloquium, April 25, 2008

イロト イヨト イヨト イヨー うらつ

Local Time Stepping / Algorithm

We solve the problem (Q) from $\tau = 0$ to $\tau = \Delta t$, using a $\mathbf{Q}^{0} = 2\mathbf{Y}^{n}$ $\mathbf{Q}^{0} = 2\mathbf{Y}^{n}$ $\mathbf{Q}^{\frac{1}{p}} = \mathbf{Q}^{0} + \frac{1}{2}\left(\frac{\Delta t}{p}\right)^{2} (2\mathbf{w} + 2\mathbf{P}\mathbf{R}^{n} - \mathbf{A}\mathbf{P}\mathbf{Q}_{0})$ $\mathbf{Q}^{\frac{i+1}{p}} = 2\mathbf{Q}^{\frac{i}{p}} - \mathbf{Q}^{\frac{i-1}{p}} + \left(\frac{\Delta t}{p}\right)^{2} \left(2\mathbf{w} + \mathbf{P}(\mathbf{R}^{n,m} + \mathbf{R}^{n,-m}) - \mathbf{A}\mathbf{P}\mathbf{Q}^{\frac{i}{p}}\right)$ i = 1...p - 1Leap-Frog scheme with $\Delta \tau = \Delta t/p$.

$$\mathbf{Y}^{n+1} + \mathbf{Y}^{n-1} = \mathbf{Q}(\Delta t) \quad \Longrightarrow \quad \mathbf{Y}^{n+1} = -\mathbf{Y}^{n-1} + \mathbf{Q}^{1}$$

This algorithm requires only one multiplication by $\mathbf{A}(\mathbf{I} - \mathbf{P})$ and p multiplications by \mathbf{AP} per time-step Δt .

The local time-stepping scheme is second-order accurate in time.

- Second-order vector wave equation
- Computational domain: $(-1,1)^2 \times (0,0.5)$ with local refinement (p = 2, p = 4)

Teodora Mitkova, University of Basel

Schweizer Numerik Kolloquium, April 25, 2008

- Second-order vector wave equation
- Computational domain: $(-1, 1)^2 \times (0, 0.5)$ with local refinement (p = 2, p = 4)
- Exact solution: $(\varepsilon, \mu \equiv 1)$

$$\mathbf{u}(x,y,t) = \frac{t^2}{2} \begin{bmatrix} \cos(\pi x)\sin(\pi y) \\ -\sin(\pi x)\cos(\pi y) \end{bmatrix}$$

• Right-hand side:

$$\mathbf{f}(x, y, t) = (1 + \pi^2 t^2) \begin{bmatrix} \cos(\pi x) \sin(\pi y) \\ -\sin(\pi x) \cos(\pi y) \end{bmatrix}$$

- Homogeneous boundary condition
- Homogeneous initial conditions
- Space DG discretization with \mathcal{P}^1 elements

Teodora Mitkova, University of Basel

Schweizer Numerik Kolloquium, April 25, 2008

• Errors with respect to the L^2 -norm time T = 0.5 for the DG approximation

level	global ref.	local ref. $p = 2$	local ref. $p = 4$
1	2.6908e-02	2.4638e-02	1.9378e-02
2	6.9554e-03	6.4469e-03	5.0874e-03
3	1.7116e-03	1.5872e-03	1.2615e-03

- Second-order wave equation
- Computational domain: $\Omega \times (0, 4.5)$; Ω a square of size 4×4 with a square hole of diagonal 0.25 at its center

local refinement p = 2

Teodora Mitkova, University of Basel

Schweizer Numerik Kolloquium, April 25, 2008

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Second-order wave equation
- Computational domain: $\Omega \times (0, 4.5)$; Ω a square of size 4×4 with a square hole of diagonal 0.25 at its center
- Homogeneous boundary condition
- Homogeneous source data
- The wave is excited through the inhomogeneous initial condition:

$$u|_{t=0} = e^{-\frac{||\mathbf{x}-\mathbf{x}_0||}{r^2}}$$
 ($\mathbf{x}_0 = (0, 1), r = 0.1$), $u_t|_{t=0} = 0.$

• Space DG discretization with \mathcal{P}^3 elements

イロト 不同下 イヨト イヨト ヨー うらつ

t = 0.18

Teodora Mitkova, University of Basel Schweizer Numerik Kolloquium, April 25, 2008

・ロト ・四ト ・ヨト ・ヨト

-1

Solution

t = 0.45

Teodora Mitkova, University of Basel Schweizer Numerik Kolloquium, April 25, 2008

・ロン ・四 と ・ ヨン ・ ヨン

Solution

t = 0.90

Teodora Mitkova, University of Basel Schweizer Numerik Kolloquium, April 25, 2008

・ロト ・四ト ・ヨト ・ヨト

Solution

t = 1.35

Teodora Mitkova, University of Basel Schweizer Numerik Kolloquium, April 25, 2008

・ロト ・四ト ・ヨト ・ヨト

Solution

t = 1.8

Teodora Mitkova, University of Basel Schweizer Numerik Kolloquium, April 25, 2008

・ロト ・四ト ・ヨト ・ヨト

Solution

t = 2.25

Teodora Mitkova, University of Basel Schweizer Numerik Kolloquium, April 25, 2008

・ロト ・四ト ・ヨト ・ヨト

Solution

t = 2.7

Teodora Mitkova, University of Basel Schweizer Numerik Kolloquium, April 25, 2008

・ロト ・四ト ・ヨト ・ヨト

Solution

t = 3.15

Teodora Mitkova, University of Basel Schweizer Numerik Kolloquium, April 25, 2008

・ロト ・四ト ・ヨト ・ヨト

Concluding Remarks

- Two model problems
 - second-order scalar wave equation
 - Maxwell's equations in second-order form
- \mathbf{M}_{ε} must be (block-)diagonal \Rightarrow explicit time integration
- Explicit local time stepping method
 - second-order accurate
 - conservation of a discrete energy
 - generalized to arbitrary order and conducting medium
- J. Diaz and M.J. Grote, *Energy Conserving Explicit Local Time-Stepping for Second-Order Wave Equations*, Preprint 2007-02, Dept. Mathematics, University of Basel. see www.math.unibas.ch/preprints
- M.J. Grote and T. Mitkova, *Explicit Local Time-Stepping Method for Maxwell's Equations, in preparation.*