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HPV

• High-Performance Visualization - like 

HPC but for interactive 3D applications 

• Address the demand to visualize huge 

data sets using COTS clusters

• Issue is to scale rendering performance 

using multiple GPU’s and CPU’s



Equalizer

“GLUT for multi-GPU systems and 

visualization clusters”



History

• 1992: CAVElib

• Multi-Frustum

• 2000: SGI OpenGL Multipipe SDK

• Scalability for SGI Onyx and Prism

• 2005: Equalizer

• Clusters, C++, Open Platform

• 2007: Eyescale Software GmbH



Selected Use Cases
Display Walls

Multi-GPU Platforms Remote Rendering

Scalable Rendering

Virtual Reality Equalizer



HPV Solution Space

• Transparent solutions

• Based on OpenGL interception

• Programming interfaces

• Distributed Scene Graphs

• Middleware

• GPGPU frameworks



HPV Transparent Solutions

• Chromium, ModViz VGP, OMP, ...

• Operate on OpenGL command stream 

(HPC analogy: auto-parallelizing 

compilers)

• Provide programming extensions for 

better performance and scalability

• Performance and compatibility issues



HPV Programming Interfaces

• ScaleViz, Vega Prime, OpenSG

• Impose invasive programming model and 

data structure (HPC analogy: CFD codes)

• Best for developing from scratch

• Equalizer, CAVElib, VRJuggler, MPK

• Limited to HPV-critical areas of the code 

(HPC analogy: MPI, PVM)

• Best for porting existing applications



GPGPU Frameworks

• CUDA, RMDP, CTM

• HPC tools to use GPUs for data processing

• Do not address parallel rendering

• Can be integrated with OpenGL and 

Equalizer



Equalizer

• Minimally invasive

• Asynchronous execution

• Runtime scalability

• Clusters and SSI

• Open Source



Minimally Invasive

• “Make porting as simple as possible - 

but not simpler.”

• Work is limited to visualization-

relevant parts

• Read Programming Guide or Parallel 

Graphics Programming presentation

http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html
http://www.equalizergraphics.com/documents/Developer/ProgrammingGuide.pdf
http://www.equalizergraphics.com/documents/Developer/ProgrammingGuide.pdf
http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html
http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html
http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html


Equalizer Application

• Typical OpenGL 

application structure

• Separate rendering and 

application code

start

clear

draw

swap

exit ?

event handling

initialize

update data

exit

no

yes

stop



Equalizer Application

• Instantiate rendering 

multiple times

• Optional: data 

distribution for clusters
yesyes
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Asynchronous Execution

• Improves scalability on bigger clusters 

• Latency between last draw and main

• Hides imbalance in load distribution

• Optional per-node synchronization



Runtime Scalability

• Runtime configuration 

• Parallel execution of the application’s 

rendering code

• Typically one thread per graphics card, 

one process per node



Runtime Configuration

• Hierarchical resource description: 

Node!Pipe!Window!Channel

• Node: single system of the cluster

• Pipe: graphics card

• Window: drawable and context

• Channel: view

• Resource usage: compound tree



Runtime Configuration

Config
compound

eye [ LEFT RIGHT ]

channel "front"
wall { ... }
swapbarrier {}

channel "bottom"
wall { ... }
swapbarrier {}

Channel
name "bottom"
viewport {...}

Window
viewport {...}

Pipe

Node

Channel
name "front"
viewport {...}



Runtime Scalability

• 2D (sort-first), DB (sort-last), eye 

(stereo) and pixel compounds

• Compatible with compositing hardware

• Hardware-specific optimizations



2D/Sort-First

• Scales fillrate

• Scales vertex processing 

if view frustum culling 

is efficient

• Parallel overhead due 

to primitive overlap 

limits scalability



DB/Sort-Last

• Scales all aspects of 

rendering pipeline

• Application needs to 

be adapted to render 

subrange of data

• Result composition 

relatively expensive



Parallel Compositing

• Compositing cost 

grows linearly for DB

• Parallelize compositing

• Flexible configuration

• Constant per-node cost

• Details in EGPGV’07 

presentation

source1

(destination)
source 2 source 3

http://www.equalizergraphics.com/documents/EGPGV07.html
http://www.equalizergraphics.com/documents/EGPGV07.html


Eye/Stereo

• Stereo rendering

• Active, passive and 

anaglyphic stereo

• Excellent 

loadbalancing

• Limited by number 

of eye views



Pixel

• Scales fillrate 

perfectly

• Similar to 2D

• Raytracing, Volume 

Rendering



DPlex/Time-Multiplex

• Good scalability 

and loadbalancing

• Increased latency 

may be an issue

• Not yet 

implemented

frame N+2frame N frame N+1

c
h

a
n

n
e

l
b

u
ff
e

r 
0

b
u

ff
e

r 
1

b
u

ff
e

r 
2



Multilevel Compounds

• Compounds allow any 

combination of modes

• Combine different 

algorithm to address 

and balance bottlenecks

• Example: use DB to fit 

data on GPU, then use 

2D to scale further



Compounds

• 2D: low IO overhead, limited scalability

• DB: high IO overhead, great scalability

• Eye: good scalability

• Pixel: linear fill-rate scalability

! Combine modes

! DB: use parallel compositing



Multi-GPU and Clusters

• Equalizer runs on both architectures

• Execution model is the same

• Shared memory systems allow 

additional optimisations

• Porting for SSI simpler than full port



Equalizer Vision

• Equalizer: Scalable rendering engine 

• Chromium: OpenGL single virtual screen

• Scenegraphs: Distributed data management

Legacy ApplicationsHPV Applications

Chromium

OpenGL, Xdmx and System Libraries

Scenegraph

Equalizer



Near Future

• DB compositing optimizations

• 2D and DB load-balancing

• Data processing

• Examples, demos, applications

• Failure robustness



Last Words

• LGPL license: commercial use welcome

• Open platform for scalable graphics

• Minimally invasive: easy porting

• Clusters and shared memory systems

• Linux, Windows, Mac OS X

• More on: www.equalizergraphics.com

http://www.equalizergraphics.com/
http://www.equalizergraphics.com/

