Equalizer

Parallel OpenGL Application Framework

Stetan Eilemann, Eyescale Software GmbH

Outline

e Overview

e High-Performance Visualization
e Equalizer

e Competitive Environment
e Equalizer

e Keatures
e Scalability
e (Qutlook

HPV

e High-Performance Visualization - like
HPC but for interactive 3D applications

e Address the demand to visualize huge
data sets using COTS clusters

* [ssue is to scale rendering performance
using multiple GPU’s and CPU'’s

Equalizer

“GLUT for multi-GPU systems and
visualization clusters”

History

1992: CAVEIlib

e Multi-Frustum

2000: SGI OpenGL Multipipe SDK
e Scalability for SGI Onyx and Prism

2005: Equalizer

e (lusters, C++, Open Platform
2007: Eyescale Software GmbH

Selected Use Cases

HPYV Solution Space

* Transparent solutions

* Based on OpenGL interception
* Programming interfaces

e Distributed Scene Graphs

e Middleware
e GPGPU frameworks

HPV Transparent Solutions

e Chromium, ModViz VGP, OMP. ...

* Operate on OpenGL command stream
(HPC analogy: auto-parallelizing
compilers)

* Provide programming extensions for
better performance and scalability

* Performance and compatibility issues

HPV Programming Interfaces

e ScaleViz, Vega Prime, OpenSG

 Impose invasive programming model and
data structure (HPC analogy: CFD codes)

e Best for developing from scratch

 Equalizer, CAVElib, VRJuggler, MPK

e [imited to HPV-critical areas of the code
(HPC analogy: MPI, PVM)

e Best for porting existing applications

GPGPU Frameworks

o CUDA, RMDP, CTM

e HPC tools to use GPUs for data processing
* Do not address parallel rendering

e Can be integrated with OpenGL and
Equalizer

Equalizer

Minimally invasive
Asynchronous execution
Runtime scalability

Clusters and SSI

Open Source

Minimally Invasive

 “Make porting as simple as possible -
but not simpler.”

e Work is limited to visualization-
relevant parts

 Read Programming Guide or Parallel
Graphics Programming presentation

http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html
http://www.equalizergraphics.com/documents/Developer/ProgrammingGuide.pdf
http://www.equalizergraphics.com/documents/Developer/ProgrammingGuide.pdf
http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html
http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html
http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html

Equalizer Application

-

e Typical OpenGL
application structure

e Separate rendering and

application code

Equalizer Application

* Instantiate rendering
multiple times

e Optional: data
distribution for clusters

-

‘ init config b---

init data

‘ begin frame b

‘ end frame b‘u

‘event handllngb

update data

@

es

exit config

‘ init windows b

exit?

stop
thread

start .
thread

start
thread
init windows
""" —

exit? g

yes

stop
thread

J

Asynchronous Execution

Improves scalability on bigger clusters
Latency between last draw and main
Hides imbalance in load distribution

Optional per-node synchronization

Runtime Scalability

* Runtime configuration

e Parallel execution of the application’s
rendering code

e Typically one thread per graphics card,
one process per node

Runtime Configuration

e Hierarchical resource description:
Node—Pipe—=Window—Channel

e Node: single system of the cluster
e Pipe: graphics card
e Window: drawable and context

¢ Channel: view

e Resource usage: compound tree

Runtime Configuration

DIMPOoUNQG
w g cye [LEFT RIGHT]

Runtime Scalability

e 2D (sort-first), DB (sort-last), eye
(stereo) and pixel compounds

e Compatible with compositing hardware

* Hardware-specific optimizations

2D /Sort-First

e Scales fillrate | I
® Scales vertex processing

if view frustum culling | “HI| 2

is efficient

e Parallel overhead due

to primitive overlap

limits scalability

DB /Sort-Last

® Scales all aspects of
rendering pipeline ¥

* Application needs to s
be adapted to render p— T
subrange of data

e Result composition

relatively expensive

Parallel Compositing

Compositing cost
grows linearly for DB

Parallelize compositing

Flexible configuration

Constant per-node cost

Details in EGPGV'07
presentation

http://www.equalizergraphics.com/documents/EGPGV07.html
http://www.equalizergraphics.com/documents/EGPGV07.html

Eye/Stereo

(")

Stereo rendering

Active, passive and

anaglyphic stereo

Excellent

loadbalancing

Limited by number
of eye views

Pixel

e Scales fillrate
pertfectly

e Similar to 2D

e Raytracing, Volume
Rendering

DPlex/ Time-Multiplex

* (Good scalability
and loadbalancing

* Increased latency

may be an issue

[m A A

e Notyet
implemented

Multilevel Compounds

e Compounds allow any
combination of modes

e Combine different
algorithm to address
and balance bottlenecks

e Example: use DB to fit
data on GPU, then use
2D to scale further

Compounds

e 2D: low IO overhead, limited scalability
e DB: high IO overhead, great scalability
* Eye: good scalability

e Pixel: linear fill-rate scalability

= Combine modes

= DB: use parallel compositing

Multi-GPU and Clusters

Equalizer runs on both architectures
Execution model is the same

Shared memory systems allow
additional optimisations

Porting for SSI simpler than full port

Equalizer Vision

 Equalizer: Scalable rendering engine
¢ Chromium: OpenGL single virtual screen

e Scenegraphs: Distributed data management

@)

HPV Applications TLegacy Applications

()

Scenegraph 1 (Chromium

[Equalizer]
— <

OpenGL, Xdmx and System Libraries
—

Near Future

DB compositing optimizations
2D and DB load-balancing
Data processing

Examples, demos, applications

Failure robustness

[Last Words

LGPL license: commercial use welcome
Open platform for scalable graphics
Minimally invasive: easy porting
Clusters and shared memory systems

Linux, Windows, Mac OS X

More on: www.equalizergraphics.com

http://www.equalizergraphics.com/
http://www.equalizergraphics.com/

