
Equalizer

Parallel OpenGL Application Framework

Stefan Eilemann, Eyescale Software GmbH

Outline

• Overview

• High-Performance Visualization

• Equalizer

• Competitive Environment

• Equalizer

• Features

• Scalability

• Outlook

HPV

• High-Performance Visualization - like

HPC but for interactive 3D applications

• Address the demand to visualize huge

data sets using COTS clusters

• Issue is to scale rendering performance

using multiple GPU’s and CPU’s

Equalizer

“GLUT for multi-GPU systems and

visualization clusters”

History

• 1992: CAVElib

• Multi-Frustum

• 2000: SGI OpenGL Multipipe SDK

• Scalability for SGI Onyx and Prism

• 2005: Equalizer

• Clusters, C++, Open Platform

• 2007: Eyescale Software GmbH

Selected Use Cases
Display Walls

Multi-GPU Platforms Remote Rendering

Scalable Rendering

Virtual Reality Equalizer

HPV Solution Space

• Transparent solutions

• Based on OpenGL interception

• Programming interfaces

• Distributed Scene Graphs

• Middleware

• GPGPU frameworks

HPV Transparent Solutions

• Chromium, ModViz VGP, OMP, ...

• Operate on OpenGL command stream

(HPC analogy: auto-parallelizing

compilers)

• Provide programming extensions for

better performance and scalability

• Performance and compatibility issues

HPV Programming Interfaces

• ScaleViz, Vega Prime, OpenSG

• Impose invasive programming model and

data structure (HPC analogy: CFD codes)

• Best for developing from scratch

• Equalizer, CAVElib, VRJuggler, MPK

• Limited to HPV-critical areas of the code

(HPC analogy: MPI, PVM)

• Best for porting existing applications

GPGPU Frameworks

• CUDA, RMDP, CTM

• HPC tools to use GPUs for data processing

• Do not address parallel rendering

• Can be integrated with OpenGL and

Equalizer

Equalizer

• Minimally invasive

• Asynchronous execution

• Runtime scalability

• Clusters and SSI

• Open Source

Minimally Invasive

• “Make porting as simple as possible -

but not simpler.”

• Work is limited to visualization-

relevant parts

• Read Programming Guide or Parallel

Graphics Programming presentation

http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html
http://www.equalizergraphics.com/documents/Developer/ProgrammingGuide.pdf
http://www.equalizergraphics.com/documents/Developer/ProgrammingGuide.pdf
http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html
http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html
http://www.equalizergraphics.com/documents/ParallelGraphicsProgramming.html

Equalizer Application

• Typical OpenGL

application structure

• Separate rendering and

application code

start

clear

draw

swap

exit ?

event handling

initialize

update data

exit

no

yes

stop

Equalizer Application

• Instantiate rendering

multiple times

• Optional: data

distribution for clusters
yesyes

yes

begin frame

clear

draw

end frame

event handling

exit ?

update data

exit config

stop

start

init config

init windows

exit?

start

thread

stop

thread

no
exit?

start

thread

stop

thread

no

swap

(sync)

clear

draw

swap

init windows

no

init data

Asynchronous Execution

• Improves scalability on bigger clusters

• Latency between last draw and main

• Hides imbalance in load distribution

• Optional per-node synchronization

Runtime Scalability

• Runtime configuration

• Parallel execution of the application’s

rendering code

• Typically one thread per graphics card,

one process per node

Runtime Configuration

• Hierarchical resource description:

Node!Pipe!Window!Channel

• Node: single system of the cluster

• Pipe: graphics card

• Window: drawable and context

• Channel: view

• Resource usage: compound tree

Runtime Configuration

Config
compound

eye [LEFT RIGHT]

channel "front"
wall { ... }
swapbarrier {}

channel "bottom"
wall { ... }
swapbarrier {}

Channel
name "bottom"
viewport {...}

Window
viewport {...}

Pipe

Node

Channel
name "front"
viewport {...}

Runtime Scalability

• 2D (sort-first), DB (sort-last), eye

(stereo) and pixel compounds

• Compatible with compositing hardware

• Hardware-specific optimizations

2D/Sort-First

• Scales fillrate

• Scales vertex processing

if view frustum culling

is efficient

• Parallel overhead due

to primitive overlap

limits scalability

DB/Sort-Last

• Scales all aspects of

rendering pipeline

• Application needs to

be adapted to render

subrange of data

• Result composition

relatively expensive

Parallel Compositing

• Compositing cost

grows linearly for DB

• Parallelize compositing

• Flexible configuration

• Constant per-node cost

• Details in EGPGV’07

presentation

source1

(destination)
source 2 source 3

http://www.equalizergraphics.com/documents/EGPGV07.html
http://www.equalizergraphics.com/documents/EGPGV07.html

Eye/Stereo

• Stereo rendering

• Active, passive and

anaglyphic stereo

• Excellent

loadbalancing

• Limited by number

of eye views

Pixel

• Scales fillrate

perfectly

• Similar to 2D

• Raytracing, Volume

Rendering

DPlex/Time-Multiplex

• Good scalability

and loadbalancing

• Increased latency

may be an issue

• Not yet

implemented

frame N+2frame N frame N+1

c
h

a
n

n
e

l
b

u
ff
e

r
0

b
u

ff
e

r
1

b
u

ff
e

r
2

Multilevel Compounds

• Compounds allow any

combination of modes

• Combine different

algorithm to address

and balance bottlenecks

• Example: use DB to fit

data on GPU, then use

2D to scale further

Compounds

• 2D: low IO overhead, limited scalability

• DB: high IO overhead, great scalability

• Eye: good scalability

• Pixel: linear fill-rate scalability

! Combine modes

! DB: use parallel compositing

Multi-GPU and Clusters

• Equalizer runs on both architectures

• Execution model is the same

• Shared memory systems allow

additional optimisations

• Porting for SSI simpler than full port

Equalizer Vision

• Equalizer: Scalable rendering engine

• Chromium: OpenGL single virtual screen

• Scenegraphs: Distributed data management

Legacy ApplicationsHPV Applications

Chromium

OpenGL, Xdmx and System Libraries

Scenegraph

Equalizer

Near Future

• DB compositing optimizations

• 2D and DB load-balancing

• Data processing

• Examples, demos, applications

• Failure robustness

Last Words

• LGPL license: commercial use welcome

• Open platform for scalable graphics

• Minimally invasive: easy porting

• Clusters and shared memory systems

• Linux, Windows, Mac OS X

• More on: www.equalizergraphics.com

http://www.equalizergraphics.com/
http://www.equalizergraphics.com/

