Introduction and Review

1. Angles

a) Acute – angle between 0° and 90°

b) Obtuse - angle between 90° and 180°

d) Right – angle exactly 90° (note symbol used to indicate

a right angle)

c) Straight - angle exactly 180°

e) Reflex – angle between 180° and 360°

- f) Complementary two angles that add up to 90°
- g) Supplementary two angles that add up to 180°
- 2. Four types of angles developed from parallel lines and a transversal.

Vertically opposite angles

$$\angle 2 = \angle 3$$

$$\angle 2 = \angle 6$$

$$\angle 5 = \angle 8$$

$$\angle 3 = \angle 7$$

Alternate interior angles

$$\angle 3 = \angle 6$$

$$\angle 3 + \angle 5 = 180^{\circ}$$

$$\angle 4 = \angle 5$$

$$\angle 4 + \angle 6 = 180^{\circ}$$

3. Line vs. line segment

4. Properties of a polygon

Definition of a polygon: The union of 3 or more segments such that each segment intersects exactly two others, one at each of its endpoints (its vertices)

- a) Triangle 3 sided polygon
 - sum of interior ∠'s is 180°

- area =
$$\frac{\text{base x height}}{2}$$
, $A = \frac{1}{2}bh$

- i) scalene a triangle with no sides of the same length.
- ii) isosceles a triangle with two sides equal and two angles equal (= sides \leftrightarrow = \angle 's)
- iii) equilateral a triangle with all three sides equal and all three angles equal.
- b) Quadrilateral 4 sided polygon
 - sum of interior ∠'s is 360°
 - i) trapezoid a quadrilateral with one pair of parallel sides.

Area of trapezoid: $A = \frac{1}{2}h(a+b)$

ii) isosceles trapezoid - a trapezoid with a pair of base angles equal and non-parallel sides equal.

iii) parallelogram – a quadrilateral with two pairs of parallel sides.

Ways of showing that a quadrilateral is a parallelogram:

- both pairs of opposite sides are parallel.
- both pairs of opposite sides are equal.
- one pair of opposite sides are parallel and equal.
- diagonals bisect each other.
- opposite angles are equal.
- all pairs of consecutive angles are supplementary.
- iv) Rhombus a quadrilateral with four equal sides.

Important properties of a rhombus:

- the diagonals of a rhombus are perpendicular to each other.
- each diagonal of a rhombus bisects a pair of opposite angles.
- the rhombus has all the properties of a parallelogram.
- v) Rectangle a quadrilateral with four equal angles.

Important properties of a rectangle.

- the diagonals of a rectangle are equal.
- the rectangle has all the properties of a parallelogram.

vi) Square – a quadrilateral with four equal sides and four equal angles.

Important properties of a square.

- the square has all the properties of a rhombus and a rectangle
- vii) Kite a quadrilateral with two distinct pairs of consecutive sides of the same length.

Important properties of a kite.

- Every kite has at least two angles of equal measure.
- 9. Circle terminology.

Circumference – the perimeter of a circle.

Radius – a segment connecting the centre of a circle with a point on the circle.

Diameter – a segment connecting two points on the circle and containing the centre of the circle.

Area – the number of unit squares that can fit inside the circumference of the circle.

10. Definitions - Altitude, angle bisector, median, perpendicular bisector

Altitude – the length of a segment from the vertex perpendicular to the base.

Angle bisector – the ray from the vertex in the interior of an angle that divides the angle into two angles whose values are equal.

Median – the segment connecting a vertex of a triangle to the midpoint of the opposite side.

Perpendicular bisector – the line passing through the midpoint of a segment and perpendicular to the segment.

Triangle Congruency

Congruent triangles – triangles that have the same shape and size.

Triangle congruency can be determined in THREE ways:

1) * SSS - (side - side - side)

2) SAS = (side - angle - side)

3) ASA – (angle – side – angle)

Are the following pairs of triangles congruent? If congruent, state one of the following congruencies: SSS, SAS, or ASA

Example:

Since $\angle A \cong \angle D$ and $\angle C \cong \angle F$, we can say $\angle B \cong \angle E$ because if $2 \angle$'s of a Δ are congruent the third must also be congruent by sum of \angle 's in a Δ .

 $\therefore \Delta ABC \cong \Delta DEF$ by ASA

A3.

A 4.

A 5.

A6.

A 7.

A8.

A 9.

A 10.

A 11.

A12.

B 1 ...

g 3.

C

Given: AB = CD

AD = BC

Show: $\triangle ABD \cong \triangle CDB$

Proof

ß 5.

Given: O is the centre of

the circle

Show: $\triangle AOB \stackrel{\ensuremath{\checkmark}}{=} \triangle COD$

Proof

B6.

Given: $\angle 1 = \angle 2$

$$\angle 3 = \angle 4$$

Show: $\triangle ABD \cong \triangle CBE$

Proof

Given: AB ⊥ bisector of CD CD bisects AB E Show: $\triangle AED = \triangle BEC$ Proof

88.

Given: $BD \perp AC$ AB = BC

Show: △ABD ≅ △CBD

Proof

ß 9.

Given: $\angle 1 = \angle 2$

EF = DF

Show: $\triangle EBF \cong \triangle DCF$

D C Proof

B10.

Given: AB = AC

BE = CE $\angle 1 = \angle 2$

Show: $\triangle DBE \subseteq \triangle FCE$

Proof

ß 11.

Given: $\angle 1 = \angle 2$

Show: $\triangle OCB \cong \triangle ODB$

Proof

g12.

Given: DB ⊥ AB

DB \(\text{BC} \)

AB = CB

Show: $\triangle DCB \stackrel{\sim}{=} \triangle DAB$

Proof