Proofs

Given: AB ⊥ BC : $AE \perp BD$, $DC \perp BC$

Prove:

 $\triangle ABE \sim \triangle BDC$

Given: $\angle 1 = \angle 2$

: ∠3 = ∠4

Prove: ED || BC

[3)

Given: $\angle 1 = \angle 2$

: ∠3 = ∠4

Prove: $\triangle ABC$ is

isosceles

T5)

Given: DE = CE

Prove: $\triangle AEB$ is

isosceles

Proof

Given: $\widehat{EB} = \widehat{CF}$

Prove: AB = CD

Proof

77)

Given: regular hexagon ABCDEF

Prove: $\triangle ACE$ is equilateral

Proof

[8]

Given: $\angle 1 = \angle 2$

: BC is a tangent

Prove: BC ⊥ CD

†9)

Given: tangents

AC and BD

Prove: CE = DE

C Proof

.I 10)

Given: circles tangent at A

: DE diameter of

small circle

Prove: BC diameter of

large circle

Proof

J 11)

Given: $\widehat{AC} = \widehat{BC}$: $OA \perp DC$, $OB \perp EC$

Prove: CD = CE

Proof

<u>†</u> 12)

Given: tangent AB and AD

Prove: $\angle 1 = \angle 2$

Given: regular pentagon ABCDE

Prove: AC = BD

Proof

Given: two concentric circles

: ACDB

Prove: AC = DB

Proof

T-15)

Given: AE = EC

Prove: $\triangle ABD = \triangle CBD$

Proof

Given: AD = BC

Prove: AABE is isosceles

Given: AB || CD

Prove: $\widehat{AC} = \widehat{BD}$

Proof

Given: tangent CD

: AD⊥DE

Prove: ΔCDE is isosceles

Proof

Given: $\angle 1 = \angle 2$

Prove: $\triangle ABE \sim \triangle DBC$

Proof

Prove: $\angle OBP = \angle ODP$

J 21)

Given: AC = CD

: tangent AB

Prove: BC = CD

Proof

I 22)

Given: AB = AC

: inscribed circle

Prove: DE || BC

Proof

7 23)

Given: tangent AC

Prove: AE || CD

Proof

T²⁴⁾ Given: tangent CF

Prove: CD = CE

 $: \angle 1 = \angle 2$

† 25)

Given: EBC

: ∠1 = ∠2

Prove: AC = AD

Proof

Given: tangents AB and CD

B Prove: AB = CD

Proof

7 27)

D Given: EG = GH = HF

Prove: $AG \cdot GB = CH \cdot HD$

Proof

Prove: AB || EF

Given: AB = OB

Prove: $\angle A = \frac{1}{3} \angle COD$

(hint: do algebraically)

Proof

 I_{34}

Given: $\angle 1 = \angle 2$

 $: AB \perp DO, AC \perp EO$

Prove: AB = AC

Proof

35)

Given: AB is tangent to

smaller of 2

concentric circles

Prove: AC = CB

Proof

Given: AE = BE

: tangent CED

Prove: AB || CED

J 37) D 1

Given: $\angle 1 = \angle 2$: $\widehat{DE} = \widehat{FE}$

Prove: BE = CE

Proof

Given: tangent BC

: AB = BC

Prove: AO = DC

Proof

Given: $\angle 1 = \angle 2$

Prove: ED = EC

Given: tangent BC

Prove: $\angle 1 = \angle 2$

Proof

Given: $CD \perp OA$, $CE \perp OB$

: CD = CE

Prove: $\widehat{AC} = \widehat{BC}$

Proof

I 43)

Given: AB =

Prove: $\triangle AFG$ is isosceles

Proof

<u>[44)</u>

Given: $\angle 1 = \angle 2$

: ∠3 = ∠4

Prove: BD is a diameter

T₄₅₎

Given: $\angle 1 = \angle 2$

Prove: AB = AD

Proof

T46)

Given: tangent BC

: ∠1 = ∠2

Prove: AB || EC

Proof

T 47)

Given: $\widehat{AB} = \widehat{CD}$

Prove: AE = DE

Proof

[48)

Given: $\angle CFG = \angle AGF$

: ABC || DE || FG

Prove: □ADEC is concyclic

(hint: prove algebraically)