Complete the following guided proofs.

F 1.

Given: AB = BC Prove: BD bisects

∠ADC

statement

reason

			_	
_	ΛΙ	\cap i	2	_

given

F2.

Given: PQ and RQ

are tangents

Prove: $\angle POQ = \angle ROQ$

atata.		. 4
state	шег	11

reason

 SSS

Given: AB is a tangent,

AB | ZY

Prove: XZ = XY

statement

reason

AB is a tangent

 $\angle AXZ = \angle XYZ$

given

 $\angle AXZ = \angle XZY$

both equal ∠AXZ

F4.

Given: LN \perp PM

Prove: Δ LMN is

isosceles

sta	ten	ıen	τ

reason

LP = PN

 $\angle LPM = \angle NPM = 90^{\circ}$

SAS

CPCTC

F 5.

statement

reason

CA =	
CR -	

F7.

Given: FD bisects ∠CDE

Prove: \angle FGE = 90°

reason

statement	reason
∠CDE = °	
	given
∠FDE =°	

F 6.

Given: FG = HJ

Prove: \triangle FGK \cong \triangle JHK

-8.

Given: AC is a tangent

Prove: AC | | FE

reason

statement

AC is a tangent

=∠BDG

∠ between chord and

reason

tangent = inscribed \angle

 $\angle BDG + \angle GDE =$

 \angle GFE + \angle GDE =

 \angle GFE = \angle BDG

both equal ∠BDG

F 9.

Given: LMNP is a

parallelogram

Prove: Δ LMO is

isosceles

_	1	1	

Given: YW bisects

Prove: $\angle WZV = \angle WXY$

statement	reason
	given
∠LMN = ∠LPN	
= ∠LPN	inscribed ∠s on same arc

statement ————————————————————————————————————	T	reason
∠WVZ =		* 2"

Given: AD and CG

are tangents

Prove: BF = BE

Given: G is the mid-

point of FH
Prove: GK | HJ

statement	reason
	given
∠ABG =	∠ between chord and
:200	tangent = inscribed ∠
= ∠BED	
∠ABG = ∠CBD	5
	both = to = \angle s
∠BFE = ∠BEF	

statement	reason
∠KGF =°	
	inscribed ∠ in semicircle
	both equal °

F-13.

Given: GH is tangent

to both circles

Prove: BC | FE

reason

GH is	s a	tangent
-------	-----	---------

given

vertically opposite ∠s

F 14.

Given: WZ ⊥ AE

Prove: WX = YZ

statement

reason

 $WZ \perp AE$

given

WC =

XC =

WC -= CZ -

17-15.

Given: TR ⊥ AD

Prove: CART is a cyclic

quadrilateral

statement

reason

 $= 90^{\circ}$

∠ACD =

∠ACD + ∠

D6.

Given: Δ KLN is

equilateral,

KL = LM

Prove: MN is a tangent

statement

reason

ΔKLN is equilateral

∠KLN =

∠NLM =

given

KL = NL

both = KL

∠LNM =

∠KNL =

∠KNM =

F 17.

Given: EB = EC **Prove:** AB = DC

statement	reason
∠EBC =	
	

F18.

Given: FG is a tangent Prove: MJ | LK

statement	reason
FG is a tangent	
∠FGM =	
∠FGL =	

A9.

Q Given: OS bisects RN,

OQ bisects RP
Prove: SO ⊥ QO

statement	reason
OS bisects RN	given
∠ = 90°	
	given
= 90°	
∠TOU = °	
	9

F 20.

Given: UV and UW

are tangents
Prove: UX | VY

statement	reason
e	given
÷	
ΔXWU ≅ ΔXVU	
∠WXU =	CPCTC
\angle VYW = $\frac{1}{2}$ \angle VXW	
$\angle WXU = \frac{1}{2} \angle VXW$	
∠VYW = ∠WXU	

21.	. /	_	_	\ .
	$^{\wedge}$	г.	<u>, /</u>	B
_(*		/)
D/		,	/	IJ

Given: $\angle DAE = \angle ADE$

Prove: AC = DB

reason
given

Given: QP = QR

Prove: S is the mid-

point of PR

statement	reason
∠QPS =	
∠QSR =°	
∠QSP =°	4:
∠QSR = ∠QSP	

5. Find the measure of each angle in the diagram. Then identify any pairs of parallel segments. Give a reason for each answer.

Complete the following.

F236.

Given: DA = DE,

DE | AC

Prove: AE bisects

∠BAC

statement	reason
DA = DE	
∠DAE =	
	given
∠CAE =	
∠DAE = ∠CAE	

Fx.24.

Prove: BP | | CO

statement	reason	
PA =		
∠PAB =		;
	radii	
-	∠s opposite equal sides	
∠PBA = ∠OCA		_
	=	_

Given: PR | | TV **Prove:** \triangle QSR \cong UST

statement	reason
	given
	alternate interior ∠s
RS = TS	
	ASA

F. 26.

statement	reason
XY = YZ = VZ	
∠ZVY =	*
∠ZVU = ∠XYV	
	given
Δ ZVU ≅ Δ XYV	

reason
definition of median
sides opposite equal ∠s
given
same side
СРСТС
2 equal ∠s adding to 180°

Central, inscribed angle questions

10. 61

Given: AB is a diameter of circle O that bisects chord CD and EF

Prove: CD || EF

Proof

10

Given: AB⊥OC

Prove: $\widehat{AC} = \widehat{BC}$

Proof

20.63

Given: AD = BC

Prove: $\square ABCD$ is

an isosceles trapezoid

Proof

10. GY

Given: $\angle 1 = \frac{1}{2} \angle 2$

Prove: $\widehat{BC} = \widehat{CD}$

, ČT

Given: AB = AC

: DE || BC

Prove: □BCED

is cyclic

Proof

2.66

Given: AC = CD

: DE = EB

Prove: EO ⊥ CO

Proof

Given: tangent CD to

circle O at E

: CD || AB

Prove: $\widehat{AE} = \widehat{BE}$

Proof

Given: XA and XB are tangent to circle O : XB and XC are

tangent to circle P

Prove: AX = CX

10.69

Given: intersecting chords AB = CD

Prove: there is no integer

such that $x\cdot(x+3)=(x+1)\cdot(x+2)$

Proof

20.610

Given: tangent AB : FG || DE

Prove: \angle GFC = \angle GCB

Proofs

H1.

Given: □ABCD is a

square

Prove: AC is a diameter

Proof

H2.

Given: circle O with

diameter AB

: ∠1 = ∠2

Prove: AC = AD

Proof

H 3.

Given: diameter AB

AC = AD

Prove: $\triangle ACB \cong \triangle ADB$

Proof

144.

Given: $\widehat{BC} = \widehat{CD}$

Prove: ΔADE ~ ΔABC

H 5.

Given: tangent AC

and BC

Prove: $\angle 1 = \angle 2$

Proof

H6.

H 7.

Given: AB is a diameter

: AC, BD are tangents

: AC = BD

Prove : OC = OD

Proof

H8.

Given: OF = OE,

: $AB \perp FO$, $CD \perp EO$

Prove : AB = CD

H9.

9.

Given: CD bisects AB

Prove: ΔABC is

iososceles

Proof

410.

Given: AC ⊥ BD

 $\mathsf{BE} \perp \mathsf{AD}$

Prove: $\widehat{CD} = \widehat{DE}$

Proof

H 11.

Given: circle O = circle P

: AB is tangent to both

circles

Prove: OB = PB

Proof

H12.

Given: AB = CB

Prove: AD = CD

*H*13.

Given: \overline{ADE}

Prove: $\angle 1 = \angle 2$

D E

Proof

Proof

H 15.

Given: tangent CD

: AC = BC

Prove: $AB \parallel CD$

Proof

416.

Given: tangent to BC

Prove: $\angle 2 = \frac{1}{2} \angle 1$

H 17.

A

B

C

B

C

Proof

Given: AF || CD

Prove: $\angle 1$ and $\angle 2$ are supplementary

2 D E

Given: AC tangent at B

 $: \angle 1 = \angle 2$

Prove: BD || FC

Proof

Given: circle O and P

tangent at B

Prove: AC = CB