A simple proof of Shapiro's Theorem

Norbert Hungerbühler Department of Mathematics University of Fribourg Pérolles 1700 Fribourg SWITZERLAND

Abstract

We prove Shapiro's Theorem by applying the well known bijection between Catalan trees and trivalent plane rooted trees, and using a simple symmetry argument.

Key words: Catalan trees, trivalent plane rooted trees, terminal vertices

1 Shapiro's Theorem

For $n \in \mathbb{N}_0$, let C_n denote the set of planted planar trees¹ with n + 1 edges, sometimes called *Catalan trees*. Figure 1 shows C_3 . Terminal edges which are not incident with the root are called *leaves*. Shapiro observed the following:

Theorem For n > 0 exactly half of the edges of the planted planar trees in C_n are leaves.

Shapiro presented a proof of this result using generating functions in [4], but finding it so attractive, and believing that there must be other, neater, more insightful proofs, offered it also as a problem in *The American Mathematical Monthly* [3]. A detailed history of Shapiro's Theorem, and additional bibliographic remarks on Catalan Problems can be found in [2].

Figure 1: $C_3 = \{ \text{Catalan trees with 4 edges} \}$. 10 among the altogether 20 edges are leaves.

2 A simple proof of Shapiro's Theorem

We recall that there is a bijection between the sets C_n of Catalan trees and T_n , the sets of planar rooted trivalent trees with n + 1 leaves (Figure 2 shows T_3). This bijection between C_n and T_n can be described as follows: First we bring a trivalent rooted planar tree in a special position starting from the root, all edges run from bottom to top or from left to right. Then we contract the

¹i.e. planar trees with a root r of degree 1

Figure 2: $T_3 = \{$ trivalent planar rooted trees with 4 leaves $\}$

Figure 3: Bijection between T_n and C_n

horizontal edges and obtain the corresponding Catalan tree. See Figure 3 for convenience, and [1] for how to find this bijection. So, in particular, $|T_n| = |C_n|^2$

The argument of the proof is now simply the following: For n > 0 we observe that, by symmetry, just as many leaves in T_n are oriented to the right as to the left. Now, since exactly the edges that go to the right are contracted, there are $\frac{|T_n|(n+1)}{2}$ leaves in C_n . This is, indeed, half of the $|C_n|(n+1)$ edges in C_n !

3 Acknowledgment

The author wishes to thank Douglas G. Rogers for bringing Shapiro's problem to his attention.

References

- N. Hungerbühler: The isomorphism problem for Catalan families. J. Combin. Inform. System Sci. 20 (1995), 129–139.
- S.-H. Seo: A pairing of the vertices of rooted planar trees. Selected papers in honor of Helge Tverberg. Discrete Math. 241 (2001), no. 1–3, 471–477
- [3] L. W. Shapiro: Problem 10753, Amer. Math. Monthly, 106 (1999), 777.
- [4] L. W. Shapiro: The higher you go, the odder it gets, Congressus Numerantium, 138 (1999), 93–96.

²And of course $|C_n|$ is the *n*-th Catalan number.