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Abstract

We deal with the concept of packings in graphs, which may be regarded as a
generalization of the theory of graph design. In particular we construct a vertex- and
edge-disjoint packing of Kn (where n

2 mod 4 equals 0 or 1) with edges of different
cyclic length. Moreover we consider edge-disjoint packings in complete graphs with
uniform linear forests (and the resulting packings have special additional properties).
Further we give a relationship between finite geometries and certain packings which
suggests interesting questions.

1 Introduction

In geometry the concept of packing may be described as follows: Given a closed set A ⊂ Rn
and a family {Bi}i∈Λ of closed subsets of A, e.g. A = R2 and Bx,r = {y ∈ R2 : |x−y| ≤ r},
(x, r) ∈ R2 × R+. A packing in A by the family {Bi}i∈Λ is an almost disjoint subset
{Bi}i∈λ ⊂ {Bi}i∈Λ, i.e. Bi ∩ Bj is a zero-set in Rn for i, j ∈ λ, i 6= j. The density
σλ of a packing is defined by σλ = 1

µ(A)

∑
i∈λ µ(Bi) if A has finite volume µ(A) and else

σλ = limj
1

µ(Aj)

∑
i∈λ µ(Bi∩Aj), where the family {Aj}j∈N of subsets of A of finite measure

is exhausting A in a regular way. The typical question is to ask for the densest packing
under eventual some restrictions on the admissible subset {Bi}i∈λ: e.g. the densest packing
in the plane R2 by circles of radius 1 (see [9]) or the densest packing in the unit square by
ten circles of equal radius (see [7]).

It is known, that the concept of geometric packing has discrete analogues (see [10]). Here
we deal with packings in (finite) graphs: Given a (finite) graph G = (V,E), V the set of
vertices and E the set of edges, and a family {Bi}i∈Λ of partial subgraphs Bi = (Vi, Ei) of
G. A packing in G by the family {Bi}i∈Λ is a subset {Bi}i∈λ ⊂ {Bi}i∈Λ such that either
the condition

(C1) Bi ∩Bj ⊂ V for i, j ∈ λ, i 6= j

or the condition

(C2) Bi ∩Bj = ∅ for i, j ∈ λ, i 6= j

holds. If, in the (C1)-case, the packing {Bi}i∈λ in (V,E) has the additional property
that there exists an m ∈ N such that every pair xl, xk of distinct vertices of V occurs
for m or m + 1 indices i ∈ λ in a connected component of Bi, then we call it homoge-
neous (C1)∗-packing. So, homogeneous (C1)∗-packings are particularly regular or “well-
balanced” (C1)-packings. This will become more clear in the examples we consider below.
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There is always a good chance to find in the set of (C1)-packings of maximal cardinality a
(C1)∗-representative. The number m is determined by a diophantic equation and also the
number of pairs of vertices occurring m + 1 times in a connected component of Bi (this
number may happen to be zero).

Now we may ask for the optimal packing in the sense that the density σλ = card({∪i∈λEi})
card(E)

is maximal under eventual some restrictions on the admissible subset {Bi}i∈λ.

In the words of graph design we have the following:

A (C1)-packing of a complete graph with density σλ = 1 such that all the Bi’s are isomor-
phic to a given graph G is a G-design. A (C1)-packing of a complete graph with density
σλ = 1 such that all the Bi’s are isomorphic to a complete graph may be regarded as a
balanced incomplete block design. Further a (C2)-packing with σλ = 1 such that all the
Bi’s are isomorphic to a complete graph on 2 vertices is a 1-factor. (For the definitions
see [6].) In this sense, our concept of packings is more general than graph design.

2 Notations and Definitions

We use the standard notation of [1].

Let Kn denote the complete, simple graph on n vertices.
A tree T is called a linear tree, if each vertex of T has degree 1 or 2.
The length of a linear tree T = (VT , ET ) is the cardinality of VT .
A linear forest is a set of linear trees satisfying condition (C2).
A uniform forest F is a linear forest such that all linear trees of F have the same length,
the height of the forest.
The size of a forest F is the cardinality of F .

Given a complete graph Kn = (Vn, En) and h > 1 a divisor of n. Let Bn,h denote the
family

Bn,h := {Bi = (Vi, Ei) : Bi a uniform forest of heigth h and size n
h} (1)

of subgraphs of Kn. We are interested in packings An,h ⊂ Bn,h in Kn by the family
Bn,h such that condition (C1) or (C1)∗ (as in Section 4) or condition (C2) and some
additional restrictions hold (as in Section 3). In the language of graph design, a (C1)-
packing An,h ⊂ Bn,h in Kn with density σλ = 1 is a resolvable, balanced path design
(cf. [6]). In the (C1)-case it is easy to see that for a packing of Kn by Bn,h there holds

card(λ) ≤ n(n− 1)/2

(h− 1)n/h

and because card(λ) is an integer we get

card(λ) ≤ h(n− 1)

2(h− 1)
(2)

(where bxc is the nearest integer less or equal than x).

On the other hand if we consider packings which respect (C2) we trivially have card(λ) ≤ 1:
So here the question is whether a packing exists or not.
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3 Packings in complete graphs by edges of different length

Let Kn be the complete graph with vertices {xi}1≤i≤n. We define the cyclic length of an
edge [xi, xj ] joining xi and xj as

l([xi, xj ]) := min{|i− j|, n− |i− j|}

See also Figure 1 for the geometric meaning of the cyclic length. Then there holds

Theorem 1 If n is even then there exists a (C2)-packing in Kn by the family Bn,2 such
that only edges of different cyclic length occur, if and only if n

2 mod 4 equals 0 or 1.

Remark 1: If n is odd the corresponding problem is trivial.

Proof: (i) Consider a (C2)-packing in K2m by B2m,2 such that every cyclic length
1, 2, . . . ,m occurs. Let P := {xi : i odd} ⊂ V2m and Q := {xi : i even} ⊂ V2m. If
an edge of the packing has odd cyclic length it is joining the sets P and Q, else it is joining
two vertices of P or of Q. Hence the number of edges of the packing having even cyclic
length must be even. Now, if m is even the even cyclic lengths occurring in the packing
are {2, 4, . . . ,m} and this set is even if and only if m ≡ 0 (mod 4). If on the other hand
m is odd the even cyclic lengths occurring in the packing are {2, 4, . . . ,m − 1} and this
set is even if and only if m ≡ 1 (mod 4).

Figure 1: (C2)-packing in K8 by
edges such that every cyclic length
occurs.

Figure 2: (C2)-packing in K32 by
edges such that every cyclic length
occurs.

(ii) For the other direction we consider two cases.

Case 1. m ≡ 0 (mod 4):
If m = 4 then A8,2 := {[x1, x8], [x2, x5], [x3, x7], [x4, x6]} is a packing in K2m such that
every cyclic length 1, 2, . . . ,m occurs (see Figure 1).
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If m = 4k (k > 1) then it is easy to check that

A2m,2 :=
{

[x1, x2k], [x2, x4k+1], [x7k+2, x7k+1], {[xi, x8k+1−i]}k<i<2k,

{[xi, x8k+2−i]}2k<i≤4k, {[xi, x8k+3−i]}3≤i≤k
}

is a packing in K2m with the desired properties. Figure 2 shows the resulting packing for
n = 32.

Case 2. m ≡ 1 (mod 4):
If m = 1 then A2,2 := {[x1, x2]} is a packing in K2m such that the cyclic length 1 occurs.

If m = 5 then A10,2 := {[x1, x2], [x3, x9], [x4, x7], [x5, x10], [x6, x8]} is a packing in K2m such
that every cyclic length 1, 2, . . . ,m occurs (see Figure 3).

If m = 4k + 1 (k > 1) then it is easy to check that

A2m,2 :=
{

[x1, x4k+1], [x2k, x4k+2], [x7k+2, x7k+1], {[xi, x8k+2−i]}k+2≤i<2k,

{[xi, x8k+3−i]}2k<i≤4k, {[xi, x8k+4−i]}2≤i≤k+1

}
is a packing in K2m with the desired properties. Figure 4 shows the resulting packing for
n = 34.

Figure 3: (C2)-packing in K10 by
edges such that every cyclic length
occurs.

Figure 4: (C2)-packing in K34 by
edges such that every cyclic length
occurs.

�

Remark 2: Although it was quite hard to find a packing in a complete graph by edges
of different cyclic length, there exist in fact many solutions for large m:

K2 : 1 solution

K8 : 1 solution

K10 : 2 solutions

K16 : 128 solutions

. . . : . . .
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Of course, congruent solutions are identified.

Remark 3: These packings are in fact very special 1-factorizations of K2m. Note that in
general 1-factorizations of K2m always exist (cf. [4] p. 85).

4 High, large and balanced forests

In this section we will consider (C1) and (C1)∗-packings in Kn by the family Bn,h. We
are interested in the cases h = n (hence the corresponding forests are of maximal possible
height), 2h = n (the corresponding forests contain exactly two trees), h = 2 (the corre-
sponding forests are as large as possible) and h2 = n (the corresponding forests are as
large as high). We show in most of the mentioned cases that estimate (2) is sharp.

Notation: If σ is a permutation of the set {1, . . . , n} and H = (VH , EH) a partial
subgraph of Kn, then σ[H] = (Vσ[H], Eσ[H]) where Vσ[H] := {xσ(i) : xi ∈ VH} and
Eσ[H] := {[xσ(i), xσ(j)] : [xi, xj ] ∈ EH} (see also Figure 5). Further let σ0 be the identity
and σn+1 := σ(σn).

4.1 High forests: h = n

For h = n > 1 we obtain by estimate (2) that a maximal packing is of cardinality less or
equal than bn2 c. And indeed we find:

Theorem 2 In Kn there exists a (C1)∗-packing An,n by Bn,n of cardinality bn2 c.

Proof: Let

A := {[x1, xn], [x1, xn−1], [x2, xn−1], [x2, xn−2], . . . , [xbn
2
c, xbn

2
c+1]}

and

σ :=

(
1 2 3 . . . i . . . n
2 3 4 . . . i+ 1 . . . 1

)
.

Then An,n := {Bi : Bi = σi[A], 1 ≤ i ≤ bn2 c} is a (C1)-packing of cardinality bn2 c (see
Figure 5). Because all pairs of vertices xk, xl belong to every Bi ∈ An,n and since every
Bi is connected, the packing is trivially (C1)∗. �

In fact Theorem 2 follows also from [4] p. 89.

Remark 4: If n is even, the density of the packing constructed above is 1. Hence, it can
be regarded as a path design (in contrast to the case n odd).
At this stage we get, as a byproduct which will be useful afterwards, also an optimal
(C1)∗-packing in Kn+1 by cycles of length n + 1: Just introduce a new point xn+1 and
close every tree constructed above by joining both ends with xn+1 (see Figure 6). The
cardinality of this packing is bn2 c, thus it is optimal. If n is even its density is 1 and hence
we get a 2-factorization of Kn+1 (see [4] p. 89).
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Figure 5: Generation of a maxi-
mal (C1)-packing in K13 by trees of
length 13.

Figure 6: Generation of a maxi-
mal (C1)-packing in K14 by cycles
of length 14.

If n = 2k and if we consider each linear forest occurring in the packing An,n (constructed
in the proof of Theorem 2) as a row of a matrix, we get a k× n-matrix which yields in an
natural way a horizontally complete k × n latin rectangle (cf. [3]).

4.2 The case 2h = n

The second highest forests appear if 2h = n > 2. In this case estimate (2) says, that a

maximal packing is of cardinality less or equal than bh(2h−1)
2h−2 c which is h (= n

2 ) for h > 2.
We find:

Theorem 3 In Kn (with n = 2h) there exists a (C1)-packing A2h,h by B2h,h of cardinality

bh(2h−1)
2h−2 c (and hence this packing is optimal), whereas a (C1)∗-packing of this cardinality

only exist for h = 2.

Proof: The case h = 2 is trivial, so let us assume h > 2. By Section 4.1 we can find a
packing for h′ = n (= 2h) of cardinality n

2 (= h). Canceling an edge of each linear tree of
this packing such that both parts are of length h we get a packing A2h,h of cardinality h.
Thus (2) is sharp also in case 2h = n.

To see that for h > 2 no (C1)∗-packing of the mentioned cardinality exists we proceed
by contradiction. Suppose there is such a packing A2h,h = {Bi ∈ B2h,h : i = 1, . . . , h}.
Consider the sets Si = {j : xi and x2h are in the same connected component of Bj} for
i = 1, . . . , 2h− 1. Since A2h,h is a (C1)∗-packing the sets Si are all of “almost equal size”
or more precisely there exists m ∈ N such that every set Si has cardinality m or m + 1,
say |S1| = . . . = |Sx| = m and |Sx+1| = . . . = |S2h−1| = m + 1. By counting edges we
obtain:

m =

{
h
2 − 1 if h even
h−1

2 if h odd
x =

{
h
2 if h even
3h−1

2 if h odd
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To continue we have to distinguish the four cases h ≡ ι mod 4, ι = 0, 1, 2, 3. We only
carry out ι = 1 (the other cases are similar). For h = 4k + 1 we obtain that |S1 ∩ Sj | = k
for j = 2, . . . , x. It follows that x1 and xj , j = 2, . . . , x, are m + 1 times in the same
connected component of a Vi. But since x − 1 = 3h−1

2 − 1 > h−1
2 = 2h − 1 − x this is

impossible. (If ι = 3, consider S1 and Sj for j = x+ 1, ldots, 2h− 1.)

An alternative proof is based upon the observation that the (C1)∗-packing considered
above would induce a partition of the set {1, . . . , h} into x subsets Si of cardinality m
having the property that their intersection is of cardinality k. It is quite easy to see that
there is no such partition. �

4.3 Large forests: h = 2

If h = 2, then because h is a divisor of n, n has to be even and of the form n = 2m (for
an m > 0). Estimate (2) says, that in this case a maximal packing is of cardinality less or

equal than 2(n−1)
2(2−1) = n− 1. In fact there holds:

Theorem 4 If n is even then there exists a (C1)∗-packing An,2 in Kn of cardinality n−1.

Proof: Let n = 2m. We consider two cases.

Case 1. m is odd, hence of the form m = 2k + 1:

Let A1 := {[x1, x2], [x3, x4], . . . , [xn−1, xn]} and σ1 :=

(
2 4 . . . 2i . . . 2m
4 6 . . . 2i+ 2 . . . 2

)
,

further A2 := {[x1, xn]} ∪ {[x2, xn−2], [x3, xn−1], [x4, xn−4], [x5, xn−3], . . . , [xm, xm+2]} and

σ2 :=

(
1 2 . . . i . . . n− 1 n
3 4 . . . i+ 2 . . . 1 2

)
.

Then

An,2 := {Bi : Bi = σi−1
1 [A1] for 1 ≤ i ≤ 2k and Bi = σi−2k−1

2 [A2] for 2k < i < n}

is a (C1)-packing of cardinality n− 1.

Case 2. m is even, hence of the form m = 2k. Here we give the proof by induction on
k. Let P := {xi : i is odd} and Q := {xi : i is even}. By induction there are packings
AP2k,2 = {APi : 1 ≤ i < m} and AQ2k,2 = {AQi : m ≤ i < n− 1} in P (respectively Q) both
of cardinality m− 1.
Then with A := {[x1, x2], [x3, x4], . . . , [xn−1, xn]} and

σ :=

(
2 4 . . . 2i . . . 2k
4 6 . . . 2i+ 2 . . . 2

)
,

define

A2m,2 := {Bi : Bi = σi[A] for 0 ≤ i < m and Bi = APi ∪A
Q
i for m ≤ i < n− 1}

which is a (C1)-packing of cardinality n− 1.
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In both cases, the packing is trivially (C1)∗ since every pair of vertices is exactly once in
the same connected component of a forest. �

Remark 5: In fact we proved that if n is even, then Kn has a 1-factorization (cf. [4]
Theorem 9.1).

4.4 Balanced forests: h2 = n

For h2 = n the estimate (2) says, that a maximal packing is of cardinality less or equal
than

(
h+1

2

)
.

Lemma If h is odd and n = h2, then there is a (C1)-packing An,h in Kn of cardinality
n−1

2 .

Proof: Use the Remark 4 to construct in Kn
n−1

2 many pairwise edge disjoint cycles of
length n. By canceling suitable edges in each cycle, we get a set of uniform edge disjoint
forests of height h, thus a (C1)-packing of cardinality n−1

2 . �

Note that the difference between n+h
2 (the upper bound for the cardinality of a (C1)-

packing which is given by estimate (2)) and n−1
2 is only h+1

2 , hence a (C1)-packing in Kn

of cardinality n−1
2 looks almost optimal. However the next Theorem shows, that there are

always (C1)-packings, such that estimate (2) is sharp and that in some cases we can even
find a (C1)∗-packing of density 1.

Theorem 5 For any h > 1 there exists a (C1)-packing An,h in Kn of cardinality
(
h+1

2

)
and hence of density 1. Moreover, if h is of the form h = pm (where p is a prime number
and m ∈ N), there exists a (C1)∗-packing An,h in Kn of the same cardinality and density.

Proof: The first part of the theorem, namely that there exist (C1)-packings An,h in
Kn of cardinality of density 1 follows quite easily from the results of [5], [6] and [2] (see
also the interpretation of the packing as solution of the well-known “handcuffed prisoner
problem”). Nevertheless, the packings constructed in the cited papers are not (C1)∗ as
one easily checks (two prisoners may walk quite often in the same row whereas others only
once). So, we have to show that for h being a power of a prime, a (C1)∗-packing (and
hence a particularly regular solution of the problem) of density 1 exists.

For even h we can give a shorter construction of a (C1)-packing than in the mentioned
papers, so let us start with

Case 1. h is an even number, hence of the form h = 2k.
First we take the (C2)-packing An,n of cardinality h2

2 constructed in the proof of Theo-
rem 2. Now if we cancel in each linear tree all edges of cyclic length 0 (mod h), we get a
(C2)-packing An,h of the same cardinality.
The canceled edges form h disjoint complete graphs {Ki

h}1≤i≤h. Again by Theorem 2 we
find a (C2)-packing Aih,h of cardinality k in each such graph. Choosing one linear tree
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(of length h) in each Aih,h we get a uniform forest of height h and size h. We repeat this

procedure k times and end up with the k missing uniform forests: h2

2 + k =
(
h+1

2

)
.

Case 2. h is of the form h = pm, where p is a prime number and m ∈ N. We will give the
proof of this case in three steps.

1st step: We identify the vertices of Kn with the points (i, j), i, j ∈ F , of the plane of the
coordinate geometry over a Galois field F with h = pm elements (as a general reference
for finite geometry see [8]). In this plane we are given h + 1 bundles of parallels, each
bundle consisting of h nonintersecting straight lines. One bundle is consisting of the lines
l∞i = {(i, j)}j∈F , the other bundles are lsi = {(j, sj + i)}j∈F (where s ∈ F ). Each bundle
of parallels may be considered as a partition of Vn, the vertices of Kn.

2nd step: It is easy to see that for any two partitions P1 = {v1
k : 1 ≤ k ≤ h} and

P2 = {v2
k : 1 ≤ k ≤ h} constructed in step 1 there is a (h × h)-matrix A = aij such that

{aij : i = k} = v1
k and {aij : j = k} = v2

k. With the h+ 1 partitions constructed in step 1
we obtain in this way h+1

2 many (h× h)-matrices.

3rd step: Now we take a matrix A = aij constructed in step 2 and show that it yields
a packing in Kn of cardinality h. Combining the h packings given by each of the h+1

2

matrices we obtain a packing in Kn of cardinality h(h+1)
2 =

(
h+1

2

)
.

(a) First consider the h linear trees [ai,i, ai+1,i, ai+1,i−1, ai+2,i−1, . . . , ai+h−1
2
,i−h−1

2
], where

all indices are taken modulo h and i = 1, . . . , h. Those trees form a uniform forest F in
Kn of height h and size h.

(b) According to Theorem 2 it is—after a suitable rearrangement of the vertices—possible
to construct h−1

2 linear trees of length h in each row or column such that all these trees are
pairwise edge-disjoint and also edge-disjoint with each linear tree belonging to the forest
F . Therefore we get h−1

2 uniform forests of height h and size h coming from the rows of A

and the same number coming from the columns. Altogether we obtain 1 + h−1
2 + h−1

2 = h
uniform forests of height h and size h which are by construction edge-disjoint.

Thus we get a (C1)-packing An,h in Kn of cardinality h(h+1)
2 =

(
h+1

2

)
, which is by con-

struction even a (C1)∗-packing.
�

Example: To illustrate the construction above we consider the case h = 3.

1st step: Figure 7 shows the coordinateplane F × F for the finite field F = F3 = {0̄, 1̄, 2̄}
and the bundles of parallels. We identify x1 ≡ 1 ≡ (0̄, 2̄), x2 ≡ 2 ≡ (1̄, 2̄) etc.
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Figure 7

2nd step: The partitions given by the bundles of parallels of step 1 give rise to the following
2 matrices having the property that each bundle occurs in exactly one of the matrices either
in the rows or in the columns: 1 2 3

4 5 6
7 8 9

 and

 3 5 7
8 1 6
4 9 2


The first matrix is built of l0̄ and l∞, the second of l1̄ and l2̄ (other choices are also
possible).

3rd step: By each of the two matrices of step 2 we construct packings in K9 of cardinality
3. The combination gives the packing of cardinality 6.

(a) By the construction given in the proof we first get the two uniform forests {[1, 4, 6],
[5, 8, 7], [9, 3, 2]} and {[3, 8, 6], [1, 9, 4], [2, 7, 5]}.

(b) At least we get the four uniform forests {[2, 1, 3], [4, 5, 6], [7, 9, 8]}, {[1, 7, 4], [5, 2, 8],
[3, 6, 9]}, {[5, 3, 7], [8, 1, 6], [4, 2, 9]} and {[3, 4, 8], [1, 5, 9], [7, 6, 2]} where the first two come
from the first matrix and the last two from the second matrix.

Remark 6: P. Hell and A. Rosa have shown in [5] that a (C1)-packing Ah2,h of Kh2 with
density σλ = 1 always exists. The difference between our solution and the solution given
in [5] for h = pm (where p is a prime number) is, that our solution is homogeneous, i.e. if
we take two arbitrary distinct vertices of Kh2 , then they appear in the same tree exactly
pm−1

2 or pm+1
2 times if p is odd and pm

2 times if p = 2. The solution given in [5] is far
away from being (C1)∗. In the language of graph design we may summarize the results as
follows.

Summary: If n = h2, then there exists a resolvable balanced path design of type (n,h,1).
Furthermore, if h = 2k, then we can choose this resolvable balanced path design such that
it is at the same time a balanced incomplete block design (the blocks being the vertices of
the trees) with every pair of vertices occurring 2k−1 times in a block. If h = pm, p an odd
prime number, then for diophantic reasons, there is no m such that every pair of vertices
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occurs exactly m times in the same tree. Therefore, in this case, the (C1)∗-packing we
constructed is the most balanced solution one can think of.

We close with the following question.

Does a (C1)∗-packing of K36 by B36,6 with density σλ = 1 exist?
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[8] G. Pickert: Einführung in die endliche Geometrie. Ernst Klett Verlag Stuttgart,
Stuttgart 1974

[9] C. A. Rogers: Packing and covering. Cambridge University Press, Cambridge 1964

[10] A. Schrijver et al.: Packing and covering in combinatorics. Mathematical centre tracts
106, Mathematisch Centrum, Amsterdam 1979

Author’s address: Lorenz Halbeisen, Norbert Hungerbühler
Mathematik Departement
ETH Zentrum HG G33.5
CH - 8092 Zürich
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