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Abstract

If a point x moves along a conic G then each polar of x with respect to a second
conic A is tangent to one particular conic H, the conjugate of G with respect to A.
In particular, if P is a Poncelet polygon, inscribed in G and circumscribed about A,
then, the polygon P’ whose vertices are the contact points of P on A is tangent to the
conjugate conic H of G with respect to A. Hence P’ is itself a Poncelet polygon for
the pair A and H. P’ is called dual to P. This process can be iterated. Astonishingly,
there are very particular configurations, where this process closes after a finite number
of steps, i.e., the n-th dual of P is again P. We identify such configurations of closed
chains of Poncelet polygons and investigate their geometric properties.

1 Conjugate conics

In order to make this presentation self-contained and to fix notation, we first describe
our general setting. The interested reader will find extensive surveys about algebraic
representations of conics in the real projective plane in [1] or [7].

A projective plane is an incidence structure (P, B,I) of a set of points P, a set of lines B
and an incidence relation I C P x B. For (p,g) € L, it is custom to say that p and g are
incident, that g passes trough p, or that p lies on g. The axioms of a projective plane are:

(A1) Given any two distinct points, there is exactly one line incident with both of them.
(A2) Given any two distinct lines, there is exactly one point incident with both of them.

(A3) There are four points such that no line is incident with more than two of them.



The dual structure (B,P,I*) is obtained by exchanging the sets of points and lines, with
the dual incidence relation (g,p) € I* <= (p,g) € I. (Al) turns into (A2) and vice versa
if the words “points” and “lines” are exchanged. Moreover, one can prove that (A3) also
holds for the dual relation. Hence, if a statement is true in a projective plane (P, B,1I),
then the dual of that statement which is obtained by exchanging the words “points” and
“lines” is true in the dual plane (B, P,1*). This follows since dualizing each statement in
the proof in the original plane gives a proof in the dual plane.

In this paper, we mostly work in the standard model of the real projective plane. For this,
we consider R? and its dual space (R3)* of linear functionals on R3. The set of points is
P =R3\ {0}/ ~, where z ~ y € R3\ {0} are equivalent, if z = Ay for some A\ € R. The set
of lines is B = (R3)*\ {0}/ ~, where g ~ h € (R3)*\ {0} are equivalent, if g = Ak for some
A € R. Finally, ([z],[g]) € I iff g(x) = 0, where we denoted equivalence classes by square
brackets. In the sequel we will identify R? and (R3)* by the standard inner product (-, )
which allows to express the incidence ([z], [g]) € I through the relation (z, g) = 0.

As usual, a line [g] can be identified by the set of points which are incident with it. Vice
versa a point [z] can be identified by the set of lines which pass through it. The affine
plane R? is embedded in the present model of the projective plane by the map

x1
1
<.%' ) — o
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Two projective planes (P1,B1,1;) and (P2, Be, I2) are isomorphic, if there is a bijective map
¢ x 1 : Py x By — Py x By such that (p,g) €1 < (¢(p),¥(9)) € La.

The above constructed model, the real projective plane, is self-dual, i.e., the plane is iso-
morphic to its dual. Indeed, an isomorphism is given by ([z], [g]) — ([z], [¢]), since

([z][9) €T <= (g [z]) €T <= (9,2) =0 <= (2,9) =0 < ([z],[g]) € T".

Therefore, in particular, the principle of plane duality holds in our model: Dualizing any
theorem in a self-dual projective plane leads to another valid theorem in that plane.

Two linear maps 4; : R? — R3, i € {1,2}, are equivalent, A; ~ Ao, if Aj = \Ay for
some A # 0. A conic in the constructed model is an equivalence class of a regular, linear,
selfadjoint map A : R? — R? with mixed signature, i.e., A has eigenvalues of both signs.
It is convenient to say, a matrix A is a conic, instead of A is a representative of a conic.
We may identify a conic by the set of points [z] such that (x, Ax) = 0, or by the set of
lines [g] for which (A~lg,g) = 0 (see below). Notice that, in this interpretation, a conic
cannot be empty: Since A has positive and negative eigenvalues, there are points [p], [q]
with (p, Ap) > 0 and (g, Aq) < 0. Hence a continuity argument guarantees the existence
of points [z] satisfying (z, Az) = 0.



From now on, we will only distinguish in the notation between an equivalence class and a
representative if necessary.

Facr 1.1. Let x be a point on the conic A. Then the line Ax is tangent to the conic A
with contact point x.

Proof. We show that the line Az meets the conic A only in . Suppose otherwise, that
y o4 x is a point on the conic, i.e., (y, Ay) = 0, and at the same time on the line Az,
ie., (y,Ax) = 0. By assumption, we have (x, Az) = 0. Note, that Az ¢ Ay since A is
regular, and (Ay,z) = 0 since A is selfadjoint. Hence x and y both are perpendicular to
the plane spanned by Ax and Ay, which contradicts y ¢ x. q.e.d.

In other words, the set of tangents of a conic A is the image of the points on the conic
under the map A. And consequently, a line g is a tangent of the conic iff A~'g is a point
on the conic, i.e., if and only if (A71g, g) = 0.

DEFINITION 1.2. If P is a point, the line AP is called its polar with respect to a conic A.
If g is a line, the point A~ g is called its pole with respect to the conic A.

Obviously, the pole of the polar of a point P is again P, and the polar of the pole of a line
g is again g. Moreover:

Fact 1.3. If the polar of point P with resepect to a conic A intersects the conic in a point
x, then the tangent in x passes through P.

Proof. For x, we have (x, Ax) = 0 since z is a point on the conic, and (x, AP) = 0 since z
is a point on the polar of P. The tangent in x is the line Az, and indeed, P lies on this
line, since (P, Ax) = (AP, z) = 0. g.ed.

The fundamental theorem in the theory of poles and polars is

Fact 1.4. Let g be a line and P its pole with respect to a conic A. Then, for every point
x on g, the polar of x passes through P. And vice versa: Let P be a point and g its polar
with respect to a conic A. Then, for every line h through P, the pole of h lies on g.

Proof. We prove the second statement, the first one is similar. The polar of P is the line
g = AP. A line h through P satisfies (P, h) = 0 and its pole is Q = A~'h. We check, that
Q lies on g: Indeed, (Q,g) = (A~'h, AP) = (AA~'h, P) = (h, P) = 0. g.e.d.

The next fact can be viewed as a generalization of FACT 1.4:

THEOREM 1.5. Let A and G be conics. Then, for every point x on GG, the polar of x with
respect to A is tangent to the conic H = AG™'A in the point ©' = A~*Gxz. Moreover, '
is the pole of the tangent g = Gz in x with respect to A.



Proof. Tt is clear, that H = AG~'A is symmetric and regular, and by Sylvester’s law of
inertia, H has mixed signature. The point x on G satisfies (x,Gz) = 0. Its pole with
respect to A is the line ¢ = Az. This line is tangent to H iff (H 'g,g) = 0. Indeed,
(H g, g) = (AG71A)" 1Az, Az) = (A~ Gz, Az) = (Gz,z) = 0. The point 2’ = A~'Gx
lies on H, since (', Hz') = (A~'Gx, AGT*AA~'Gz) = (Gx,z) = 0. The tangent to H in
x'is Hx' = AGT'AA™'Gx = Az which is indeed the polar of x with respect to A. The
last statement in the theorem follows immediately. q.e.d.

DEFINITION 1.6. The conic H = AG™'A is called the conjugate conic of G with respect
to A.

REMARK: THEOREM 1.5 generalizes FACT 1.4 in the following sense: If the conic G degen-
erates to a point P, the conjugate conic H with respect to A degenerates to the polar of P
with respect to A: Indeed, let A and G be arbitrary conics, with Gg3 = 1, and P = (0,0, 1)
a point represented by the matrix @ = diag(p, ¢,0), p, g > 0. The conic G\ = \G+(1—-\)Q
in the pencil generated by G and @) degenerates to the point P as A \ 0. Then

A2, Aj3Asz AjzAss
Hy = )l\l{"% AAG;lA = | Ai13A03 A%S AszAss
A13As3 AgzAss Al

and 0 = (z, Hyx) = (A1371 + Agzze + Aszz3)? agrees with the polar AP of P with respect
to A.

The following facts follow directly from the definition.

o H is conjugate to G with respect to A iff G is conjugate to H with respect to A.
e (G is conjugate to itself with respect to G.

e [f H is conjugate to G with respect to A, and G is conjugate to J with respect to A,
then H = J.

2 Chains of conjugate conics

We are now considering a sequence of conics Go, G1, Ga, ... such that G;; is conjugate to
G—1 with respect to G; for all ¢ > 1. Such a sequence will be called a sequence of conjugate
COnics.

THEOREM 2.1. Ggo,G1,Go, ... is a sequence of conjugate conics iff Giiq1 ~ Gl(GalGl)i
for all i > 1.



Proof. We proceed by induction. The formula for ¢ = 1 is just the definition of conjugate
conics. Now let us assume, that the formula is correct for some index ¢ > 1. Then

Gita ~ Git1G;'Giyr ~
~ Gi(G3'G1) (GI(GF G TN GGGy =
= GGG (GG ) T eTiIG (G Gh) =

= GiGlE™,
which is the formula for the index 7 + 1. q.e.d.
A sequence Gg, G1,Go, . .. of conjugate conics is called closed cycle or chain of lengthn > 2,

if Gy ~ Gy, for all k£ > 0, and if n is minimal with this property. Then, THEOREM 2.1
gives immediately the following:

THEOREM 2.2. Let I denote the 3 x 3 identity matriz. A sequence Go, G1,Ga,... of con-
jugate comics is a closed cycle of length n iff (GalGl)" ~ I and if n is minimal with this
property. In this case, there are representatives of the conics such that

(Gg'G)" =1. (1)

Proof. The relation (Gy'G1)™ = M ~ I (for some A # 0) is a direct consequence of
THEOREM 2.1. By replacing G; by A™'/"G1, one gets (1). Observe, that the case n even
and A < 0 does not occur, as can be seen by considering the determinant of (G G1)™ = AI.

q.e.d.

Let us briefly discuss the nontrivial solutions S € R3*3 of the equation S™ = I.

LEMMA 2.3. Let S € R®*3 and n > 2 be a natural number. Then the following are
equivalent:

(a) S is a solution of S™ =1 and S™ # +1I for 1 <m < n.
(b) S = RBR™! where R € R3*3 is a reqular matriz and

€ 0 0
B= 1[0 cos(2rl/n) sin(27l/n)
0 —sin(27¢/n) cos(2wl/n)

where € = 1 if n is odd, and ¢ = +1 if n is even, and where £ € {1,2,..., L”T_lj}
satisfies

() (n)=1 ife=1,
(¢,n/2) =1 and In/2 even ife = —1.



If S satisfies one of the above equivalent conditions, then S is diagonalizable, its eigenvalues
are n-th roots of unity, and the minimal polynomial of S is the characteristic polynomial
of S. Moreover:

e Ifn is odd, then

o det(95) =1,
o 1 s an eigenvalue of S of algebraic multiplicity 1, and it is the only real eigen-
value.

e Ifn is even, then

o det(S) € {-1,1},

o 1 or —1 is an eigenvalue of S of algebraic multiplicity 1, and S has only one
real eigenvalue.

Finally, concerning (b), if x1 is the eigenvector of S corresponding to the real eigenvalue €,
and x5 the eigenvector to the complex eigenvalue e2™4/™ with positive imaginary part, then
the transformation matriz R has the columns x1,Rexo,Im xo.

Proof. We first assume (a) and show (b): Observe, that two similar matrices annihilate the
same polynomials. Assume that S has a non-diagonal Jordan decomposition S = TJT !,
then J would also solve J™ = I, which clearly is not possible. Hence, S is diagonalizable
and S = TJT~! for a regular matrix T € C3*3 and J = diag(A1, A2, A3) with J"* = I.
Hence, the eigenvalues \,, € C are n-th roots of unity and the columns of T are the
corresponding eigenvectors x1,xa, x3. The characteristic polynomial pg(\) = det(S — AI)
has real coefficients and is of degree 3. Hence, S has at least one real eigenvalue A\ = ¢,
with e = 1 if n is odd, and ¢ € {—1,1} if n is even. On the other hand, if A2 is also real,
it follows that A3 is real as well, and thus J? = I which implies S? = I contradicting the
assumption in (a). It follows that Ao = A3 ¢ R and, without loss of generality, Ay = g2mit/n
for some ¢ € {1,2,..., L%J} has a positive imaginary part.

Since B™ # +1 for 1 < m < n, we get the following conditions for ¢: If ¢ = 1, then, for
1 <m < n, m-{is not a multiple of n (otherwise, B™ = I), which implies (¢,n) = 1. If
¢ = —1 (which implies that n is even), then, for 1 < m < n and m even, m - £ is not an
even multiple of n/2 (otherwise, B™ = I), and for 1 < m < n and m odd, m - £ is not
an odd multiple of n/2 (otherwise, B"™ = —I). In other words, if ¢ = —1, then, for any
integer m with 1 < m < n, if s is a solution for the equation m - ¢ = s-n/2, then s and m
must have different parity. This shows that if n/2 is even then ¢ must be odd (otherwise,
for m =n/2 and s = £ we get m - £ = s-n/2 where m and s are both even). Similarly, we
get that if n/2 is odd then ¢ must be even. Let us now assume that n/2 is even and that
Cisodd. If m-¢=s-n/2, where m # n/2, then (m+n/2)-¢ = (s£/¢)-n/2. Now, since



n/2 was assumed to be even, m +n/2 has the same parity as m, and since ¢ is odd, s and
s+ ¢ have different parities. Hence, if there are integers m, s where 1 < m < n/2 such that
m - ¢ = s-n/2, then there are integers m’, s’ where 1 < m’ < n such that m'- £ =s"-n/2
and m’ & s’ have the same parity. So, there are no m’ & s’ with the same parity which
solve the equation m' - £ = s’ - n/2, where 1 < m/ < n and m’ # n/2, if and only if there
are no m & s which solve the equation m - ¢ = s-n/2 where 1 < m < n/2. This gives us
the condition (¢,n/2) = 1. The case when n/2 is odd and consequently ¢ is even gives also
(¢,n/2) = 1, which shows condition (x).

Now, let
1 0 0
U=10 1/2 —i/2
0 1/2 /2

Then, B = U~'JU, and S = RBR™! for R = TU € R**3 with columns x, Re zo, Im z>.
This shows (b).

An elementary calculation shows, that (b) implies (a).

To conclude, observe, that S™ = I implies det(S)” = 1 and hence det(S) = 1 if n is
odd, and det(S) € {—1,1} if n is even. Finally, since the minimal polynomial and the
characteristic polynomial share the same zeros, they must agree as we have three simple
ZETos. q.e.d.

The corresponding lemma for n = 2 is as follows:

LEMMA 2.4. Let S € R33. Then, the following are equivalent:

(a) S is a solution of S*> =1, S # +1.

(b) S = RJR™! where R € R®*3 is a regular matriz, and J = diag(1,1,—1) or J =
diag(1,—1,—1).

If S satisfies one of the equivalent conditions, the minimal polynomial of S is p(z) = x> —1.

The proof uses the same arguments as in the proof of Lemma 2.3.

2.1 Self-conjugate pairs of conics

Let us consider the case n = 2 in THEOREM 2.2: For n = 2, we obtain self-conjugate pairs
of conics. From Lemma 2.4, we know that all solutions S # 4I of S? = I are obtained
in the form S = R~'JR, where R € R3*3 is regular, and J € R3*3 is a diagonal matrix
with diagonal elements in {—1, 1} with mixed signature. (Observe, that here we exchange



the role of R and R~! compared to Lemma 2.4, because the resulting formulas turn out
slightly nicer.) Then, S = GglGl, ie.,

G1=GoR'JR. (2)

By a suitable projective map, we may assume without loss of generality, that Gog =
diag(1,1,—1) is a circle. Observe, that we only accept solutions for G in (2) which are
selfadjoint and have mixed signature. We restrict ourselves to the discussion of the case
J = diag(1,1,-1).

It is then easy to see that G; = G| in (2) implies
R11R31 + Ri2R32 — Ri3R33 = Ro1 R31 + RaaR3p — RozR3z = 0. (3)
In other words, the first two rows of R are orthogonal to the third one with respect to the

Minkowski inner product 2" Jy induced by J. Condition (3) is actually sufficient for Gy
to be symmetric as it implies that

G =GoR'JR =
] R%l — R§2 + R%g 2R31 R39 2R31 Rs3
R 2R3 R —R3; + R3, + R3; 2R3z Rss (4)
31 32 33 2R31R33 2R32R33 R% + R3, + R2,

is symmetric and together with G a solution of (1) for n = 2. The eigenvalues of G; are

(R33 + my (RB3 - my

]-7 - y
R, + R3, — R R, + R3, — R

Hence, G; has mixed signature iff the third row of R is spacelike with respect to the
Minkowski inner product induced by J, i.e., R3; + R3, > R3;. We therefore obtain:

PROPOSITION 2.5. Let J = diag(1,1,—1), and R € R3*3 be such that its first and second
row are orthogonal to the third row with respect to the Minkowski inner product induced by
J and the third row is spacelike. Then Gy = diag(1,1,—1) and G1 = GoR™'JR is a closed
chain of conjugate conics of length 2. In other words, the polar p of every point P on Gy
with respect to G is tangent to Gg, and the polar q of every point @ on G1 with respect to
Gy is tangent to Gy.

Figure 1 shows an example of such a self-conjugate pair Gy, G1 of conics.



Figure 1: An example of a self-dual pair of conics: The polar p of every point P on Gy
with respect to (G1 is tangent to Gy, and the polar ¢ of every point ) on GG; with respect
to Gg is tangent to G.

Formula (4) constitutes a map G7 : U C R® — R3*3 from an open set U into the 3 x 3
matrices: Obviously, G1(Rs1, R32, Rs3) = G1(AR31, AR32, AR33) for all A # 0. Hence, if we
choose

¢ :R? = R3,(4,1) — (cosh ) cos ¢, cosh ) sin ¢, sinh ¢))
we can describe the set of solutions by composing G1 o ¢ to obtain

PROPOSITION 2.6. Let Gy = diag(1,1,—1). Then, the component of selfadjoint solutions
G1 of (Gy'Gy)? = I with mived signature which contains G1 = diag(1,—1,1) is a two
dimensional immersed manifold in R3*3, parametrized by

sinh? ¢ + cos(2¢) cosh? sin(2¢) cosh? 1) cos ¢ sinh(2))
Gi(p,0) = sin(2¢) cosh? 1) sinh? ) — cos(2¢) cosh)?  sin ¢ sinh(21))
cos ¢ sinh(2v)) sin ¢ sinh(2¢)) cosh(2¢)
for (¢,4) € R*.
Proof. 1t is easy to check that the rank of the differential of this map is 2. q.e.d.

The case Gy = diag(1,1,—1) and J = diag(1, —1, —1) is similar and yields a second compo-
nent of solutions via (2). Interestingly, the characteristic polynomial of the pencil generated
by Gy, Gy is an invariant, which distinguishes both cases:



LEMMA 2.7. Let Gy, G be two arbitrary different conics solving (1) for n = 2, i.e., Gi =
GoR™YJR for a suitable regular matriz R € R3*3 and J = diag(A\o, M1, X2), N € {—1,1},
with mized signature. Then, det(G1 — AGy) is, up to a factor, equal to the characteristic
polynomial of J.

Proof. We have

det(G1 — AGo) = det(GoR™'JR — A\Gy)
= det(Go) det(R™'JR — )
= det(Go) det(J — AI) (5)

q.e.d.

We will encounter a similar phenomenon for values n > 2.

2.2 Closed chains of conjugate conics
THEOREM 2.8. There are closed chains of conjugate conics of arbitrary length.

The proof is constructive:

Proof. Let
1 0 0 cos(3) sin(3) 0 -1 0 2
Go=10 1 0], J=|-sin(%Z) cos(2) 0, R=|[ 0 2 0],
0 0 -1 0 0 1 -2 0 1

and G1 = GoR~'JR. Then, for Giy1 = Gi,lG;_lzGi,l, we have by induction for ¢ > 1

%(25 — 16 cos(ZZ)) %sin(%) —430 sin(%1)?
G; = 3 sin(2Z) cos (1) — 3 sin(%F)
— 40 gin (im)2 —3sin(%r)  L1(16 — 25 cos(2T))

and in particular, G, = Go and G; # G; for 0 <7 # j < n. G has mixed signature, since
the eigenvalues are

1 o 2 2
-1, — |50—-32cos|— | £ 32cos | — ) —50) —324 ). (6)
18 n n

q.e.d.
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REMARK: By the implicit function theorem it is easy to check that there is a differentiable
function

p:UCRS - R3 (Ry1, Ri2, Ro1, Rao, R31, R32) — (p13, p23, p33)

on an open set U such that for Gy and J as in the proof above, and for

Ri1 Ri2 pi13
R=1[Ran Ro p23
R31 R32  p33

the matrix G; = GoR™'JR is symmetric and has mixed signature. In particular Gg, G
solve (1).

Figure 2 shows a closed chain of conjugate conics of length n = 27 as constructed in the
proof of Theorem 2.8.

Figure 2: Closed chain of conjugate conics of length n = 27.

3 Closed chains of dual Poncelet polygons

In 1813, while Poncelet was in captivity as war prisoner in the Russian city of Saratov, he
discovered his famous closing theorem which, in its simplest form, reads as follows (see [8]):

THEOREM 3.1. Let K and C be smooth conics in general position which neither meet nor
intersect. Suppose there is an k-sided polygon inscribed in K and circumscribed about

11



C. Then for any point P of K, there exists a k-sided polygon, also inscribed in K and
circumscribed about C', which has P as one of its vertices.

See [3], [4] for classical overviews about Poncelet’s Theorem, or [5] for a new elementary
proof based only on Pascal’s Theorem.

Figure 3 shows the case of two Poncelet polygons with five vertices. Observe, that the

Figure 3: Two Poncelet pentagons.

polar of a vertex of a Poncelet polygon on K with respect to C' joins the contact points of
its ajacent sides with C. Therefore, we have:

THEOREM 3.2. Let K and C be conics, and P a Poncelet polygon, inscribed in K and
circumscribed about C. Then, the polygon whose vertices are the contact points of P on C
is tangent to the conjugate conic of K with respect to C'. Vice versa: The polygon formed
by the tangents in the vertices of P on K has its vertices on the conjugate conic to C with
respect to K.

Two Poncelet polygons which are related in the way described in Theorem 3.2 will be called
dual. See Figure 4 for an illustration.

12



Figure 4: A Poncelet polygon (red) and its “inner” (blue) and “outer” (yellow) dual.

The process of forming dual Poncelet polygons can be continued iteratively in both direc-
tions. It has been observed in [6], that such chains of dual Poncelet polygons may close in
finite projective planes. At first sight, it is counter intuitive that this phenomenon could
occur in the real projective plane as well.

Let us nonetheless try to find conics Gg, G1 which carry a Poncelet polygon, and which,
at the same time, build a closed chain Gy,G1,...,G, = Gg of conjugate conics. We
already know, that equation (1) must hold in order to satisfy the second condition. For the

first condition, namely that Gy, G carry a Poncelet k-gon, we recall the Cayley criterion
(see [2]):

THEOREM 3.3 (Cayley criterion). Let Go, G be conics, D(\) = det(Gop + AG1), and
D(N) =co+ad+ X+ e\ 4.

Then, there exists a Poncelet k-gon with vertices on G1 and tangent to Gg if and only if

C3 Cq4 e Cp+1
c & ... C
det 4 > P2 = for k = 2p,
Cp+1 Cpt2 ... C2p—1
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or

(&) C3 -eo Cpt1
c c ... C
det 3 4 P2 = fork=2p+1.
Cp+1 Cpt+2 ... C2p

We have seen in the previous section, that the solution set of (1) has a multidimensional
parameter space and consists of several connected components. For n = 2 it follows from
Lemma 2.7, that D()) is, up to a factor, constant on each of these components. It turns
out, that this holds true for n > 2 as well:

LEMMA 3.4. Let Go, G1 be two conics satisfying (Gg'G1)" = I, n > 2, (Gy*G1)™ # +1
for 1 < m < n, and D(\) = det(Go + A\G1) the characteristic polynomial of the pencil
generated by Go, G1. Then D(X) is, up to a factor,

(A + €)(A2 + 2 cos(2¢m/n) + 1)

where e =1 if n is odd and € = +1 if n is even, and where £ € {1,2,..., L"T_lj} satisfies
(4,n)=1 ife=1
(4,n/2) =1 and In/2 even ife = —1.

Proof. By Lemma 2.3, we have G; = GoRBR™! for a regular matrix R € R3*3 and

€ 0 0
B= |0 -cos(2r¢/n) sin(27¢/n)
0 —sin(27l/n) cos(2wl/n)

with € and ¢ as specified above. Hence,

D) = det(Go+ \Gy)
det(Go + A\GoRBR™)
det(Go)det(I + ARBR™)
(
(

det(Go) det(I + AB)
= det(Go)(1 + X&) (1 + 2\ cos(20m/n) + \?)

which completes the proof. q.e.d.

The converse is also true:

LEMMA 3.5. Let Go # G1 be two conics and D(N\) = det(Go + AG1). Suppose that D(N)

is, up to a factor, of the form

(A +e)(A2 + 2\ cos(20m /n) + 1)
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where e =1 if n is odd and e = £1 if n is even, and where £ € {1,2,..., 25|} satisfies

(4,n)=1 ife=1
(4,n/2) =1 and In/2 even ife = —1.

Then, (GglGl)" =1, and (GalGl)m # =41 for 1 <m <n.

Proof. The characteristic polynomial of G, Gy is
det(Gy'G1 — M) = det(Gy')det(G1 — A\Gy)
1
= det(Gy1)(—\)?det(Go + — G
1
= det(Gg)(=A)*D(=7)
= (1 —Xe)(1—2\cos(2ml/n) + \?)

up to a factor. The roots are e and e*2™#/"  Hence, the characteristic polynomial of

Gy '@y is a factor of V(\) = X" — 1. Thus, the claim follows by the Cayley-Hamilton
Theorem. q.e.d.

The question is now, for which n (the length of a cycle of conjugate conics starting with Gy,
G1), £ (the parameter in D()\) in the Lemmas 3.4 and 3.5) and & (the length of the Poncelet
polynomial), the Cayley criterion is satisfied. In the following theorem we consider the case
n=23.

THEOREM 3.6. Fach closed chain of conjugate conics of lengthn = 3 carries closed Poncelet
triangles. Moreover, the third dual of the first Poncelet triangle is again the first Poncelet
triangle.

REMARK: Observe, that (Gy'G1)? = I is equivalent to (G7'Gp)? = I. In particular, no
matter whether we start with a Poncelet triangle with vertices on Gy which is tangential
to GG1 or the other way round, we always get a closed cycle of dual Poncelet triangles.

Proof of Theorem 3.6. By the Lemma 3.4, we have that D(\) = 1 4+ A% and

2 28 29 5pl?

DAN=14———+—=——+...
() +2 8+16 128+

up to a factor. For p =1 and k = 2p + 1 = 3, the determinant in the Cayley criterion is
co = 0, the coefficient of 22, which shows the first part of the theorem.

For the second part, let Gg, G1, G2 be a closed chain of conjugate conics and let Ag, Ay, Ag
be three Poncelet triangles such that A; has its vertices on G; and the vertices of A;y1 are
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the contact points of A;, where we take indices modulo 3. Let A, B, C be the vertices of
Ay. By a projective transformation we may assume that C' = (0,0, 1), and that the contact
points of AC, BC, AB are (1,1,0),(—1,1,0),(0,—1,1) respectively. Recall that any four
point, where no three of them are collinear, can be mapped by a projective transformation
to any four points, where no three of them are collinear. Thus, (1,1,0),(-1,1,0), (0,—1,1)
are the vertices of Ay. Now, since a conic is uniquely defined by two tangents with their
contact points and an additional point, we get that G is a hyperbola. Moreover, Gy is
the hyperbola 22 — 2 + 22 = 0, which implies that A = (—1,—1,1) and B = (1, —1,0).
Let P,@, R be the vertices of Ay, where P is the contact point of the line (—1,1,0) —
(1,1,0), @ the contact point of (0,—1,1) — (—1,1,0), and R that of (0,—1,1) —(1,1,0). In
particular we get that G2 has just one point at infinity, namely P, which shows that G4 is a
parabola. Since P is a point at infinity, we get that the two tangents P and PR to G are
parallel. Since the parabola is uniquely defined by the three tangents (—1,1,0) — (1,1,0),
(0,-1,1)—(-1,1,0), (0,—1,1) — (1,1,0) and the two contact points P and @, the contact
point R on (0,—1,1) — (1,1,0) is determined. Moreover, by an easy calculation we get
that AA’ = BB’, where A’ and B’ are the intersection points of AB with PQ and PR

respectively.

Figure 5: The situation when A # A’.

If A= A’, then B = B’ and QR is tangent to G with contact point C, which shows that
the third dual of Ag is again Ag.

Otherwise, Gy is a conic containing A, B, C where PQ,QR, RP are tangents. In general,
there are four conics going through three given points and having two given tangents. So,
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there are four conics going through A, B, C' with tangents PQ) and PR.

~

i

!
&

Figure 6: The four ellipses going through A, B, C' with tangents PQ) and PR.

However, there are just two conics going through the three points A, B, C' with the three
tangents PQ, @R, PR. In fact, the two conics turn out to be two ellipses, both with center
Z = (0,-1,1), where PQ,QR, RP are three sides of a rhombus which is tangential to Gj.

Figure 7: One of the two ellipses going through A, B, C' with tangents PQ, PR, QR.
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Let U and V be the contact points of PQ) and PR with one of these ellipses. Then, UV
goes trough Z and since AB is a tangent to G; with contact point Z and AB is different
from UV, we get that UV is not tangent to G;. Hence, APQR is not the second dual of
Ag; which completes the proof. q.e.d.

Figure 8 shows such a configuration. Observe, that the triangles move together if one of
the vertices moves along its conic. The nine vertices of the three triangles form a Pappus

configuration.

i

Figure 8: The red triangle is inscribed in the red ellipse and tangent to the green hyperbola.
The blue triangle is inscribed in the blue ellipse and tangent to the red one. The green
triangle is inscribes in the green hyperbola and tangent to the blue ellipse. Each vertex of
a triangle is contact point of a side of its dual. The tangent in the point of intersection of
two of the conics is tangent to the third conic. This is the limiting situation if the triangles
degenerate to a line.

The situation we encountered above of a closed chain of three conjugate conics which carries
a closed chain of dual Poncelet triangles is quite miraculous. Thus, we shall call such chains
miraculous chains of Poncelet triangles. The question arises whether other miraculous
chains exist. A first result is, that miraculous chains which carry Poncelet triangles must
be of length 3:

ProposiTION 3.7. If Go, Gy induces a closed chain of conjugate conics of length n which
carries Poncelet triangles, then n = 3.
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Proof. For a closed chain of conjugate conics of length n, we have by Lemma 3.4 that D(\)
is of the form (A + &)(A\% + 2Xa + 1), where a = cos(27¢/n), ¢ = 1 if n is odd, e = +1 if n
is even, and where ¢ € {1,2,...,| %5} |} is such that

(ln)=1 ife=1
(¢,n/2) =1 and ¢n/2 even if e = —1.

If the chain carries Poncelet triangle, we get by the Cayley criterion for triangles that a
is a solution of 3 4 4ca — 4a®> = 0. For ¢ = 1 this implies that the possible values for a
are —1/2 and 3/2. Now, a = 3/2 is impossible since cos(27¢/n) # 3/2. So, we must have
a = —1/2, which implies that ¢/n = 1/3 and hence n = 3. For ¢ = —1, the possible values
for a are 1/2 and —3/2. Again, a = —3/2 is not possible, and hence a = 1/2 which implies
n=23. q.e.d.

Before we investigate whether there are also miraculous chains of Poncelet quatrilaterals or
of other Poncelet n-gons, we investigate some geometrical properties of miraculous chains
of Poncelet triangles.

Given a general Pappus configuration of nine points and nine lines, one may ask whether
it carries three conics as in Figure 8: Each of the three conics passes through three of
the nine points, and in each of these points the conic is tangent to one of the three lines
which pass through the point. However, this will in general not be the case. Brianchon’s
Theorem implies, that in a triangle which is tangent to a conic, the three lines joining a
vertex of the triangle and the opposite contact point are concurrent:

Figure 9: A consequence of Brianchon’s Theorem

So, this condition must hold in each of the three triangles that are circumscribed in one of
the tree conics. Surprisingly, if the condition holds in one of the triangles, it holds in all
three triangles:

LEMMA 3.8. Let A;j, 1 <i,j <3 be a Pappus configuration, i.e., three points are collinear
and lying on the line lyg iff j+ai+F =0 mod 3 (see Figure 10). Furthermore, we define

19



the following three quadruples Hy, (1 <k < 3) of points:

Hy: oo A Lo, Aoo, Aro, A2o
Hy ' lo1 Nloo, Ao, Ava, Ago
Hs:  Lloo A loa, Aot, Ar1, Aoy

Finally, we define the following three triples Ty, (1 < k < 3) of lines (see Figure 10):

Ty : Ao — Aoz, Ao — A1, Aog — Ao (red)
Ty @ A — Aor, Ao — Ao, A1a — Agp (green)
T5: Ago— Ao, A21 — Az, A12 — Anr (blue)

Figure 10: Pappus’ Theorem. The dashed lines form the triple 7; (1 < ¢ < 3).

Then, for 1 < k < 3, we get:

(a) Ty is concurrent iff Hy is harmonic.
(b) If one of the quadruples Hy, of points is harmonic, all quadruples are harmonic.

(c) If one of the triples Ty, of lines is concurrent, all triples are concurrent.

Proof. Part (a) is an immediate consequence of the theorems of Menelaos and Ceva, and (c)
follows by (a) from (b). So, we just have to prove (b):
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Loo N o1, Aoo, Aro, A2o H; is harmonic

= lo1, 410, A1o0 — A12, L2 is a harmonic pencil
= Lo1 A Loz, Aoty Loz A (A1p — Ag2), A2 are harmonic points
= Ao — (lo1 A lo2), l12, A1o — A12, 021 is a harmonic pencil
= lor N\ Ly, Ao, A1, Ao H> is harmonic

= lo2, la0, A1 — A1a, 11 is a harmonic pencil
= Loo A Loz, Ao, Loo N (A11 — Ag2), Ao are harmonic points
= A1z — (Loo A Lo2), l10, A11 — A1, lo2 is a harmonic pencil
= Loo N Lo, Aa1, Ar1, Aot H3 is harmonic

= loo, la1, A11 — Aqo, l12 is a harmonic pencil
= Loo A Loty A2, o1 N (A11 — Alg), Az2 are harmonic points
= A11 — (Loo A lo1), b11, A1n — Ao, Lo is a harmonic pencil
= oo A Lo1, A20, A10, Aoo H, is harmonic

As a consequence we get the following

COROLLARY 3.9. Let A;j, 1 < 4,5 < 3 be a Pappus configuration, i.e., three points are
collinear and lying on the line Log iff j+ i+ =0 mod 3 (see Figure 10). Then, the
following are equivalent:

o The lines Ayy — Az, A1g — A11, Aoy — Aoy are concurrent.
o The points Loy A o1, Aoo, A1g, Ao are harmonic.

e The configuration carries a closed Poncelet chain for triangles of length three: There
are three conics C1,Cy, Cs such that

the triangle AgoA11 Az is inscribed in Cy and circumscribed about Cs
the triangle Ag1A12A21 is inscribed in Cy and circumscribed about Cq

the triangle AogaA10A22 is inscribed in C3 and circumscribed about Co

We close the discussion of miraculous chains of Poncelet triangles with the following
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PropPOSITION 3.10. Let Go, Gy, Go be a closed chain of conjugate conics and Ao, Ay, Ag
be three Poncelet triangles such that A; has its vertices on G; and the vertices of A1 are
the contact points of A;, where we take indices modulo 3. Then the Brianchon point of A;

lies on G;.

Figure 11: The Brianchon point of the red triangle lies on the red conic.

Proof. We apply Pascal’s Theorem: Let P be the intersection of the triple T5 (green in
Figure 10). Consider the hexagon

P — Ay — Agp — A1o — Aoz — Ao2
Five of these points lie on the green hyperbola. The sixth point P also lies on this hyper-
bola if the intersections of opposite sides of the hexagon are collinear. And indeed, these

intersections are Ay — A1 — Ag1 (observe that two of the sides are tangents). q.e.d.

Let us now investigate chains of conjugate conics of length n = 6: From Lemma 3.4 we
infer that D(X) is, up to a factor, one of the following polynomials:

N2 raa+1, MB—222420-1
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The Taylor series of the roots of these polynomials are

2 4 5 6 31’8

X x X Xz
D\ =1 r_rro_r o or o
e T I I T T
and 2 4 5 6 8
) x T x x 3z
DN =i(l-a+ oL 2 T 00

2 8 8 16 128
In both cases, for p = 2, k = 2p = 4, the Cayley determinant is c¢g = 0, the coefficient of
2. Therefore, the corresponding closed chain of conjugate conics of length n = 6 carries
closed Poncelet quadrilaterals, and hence we have

THEOREM 3.11. Each closed chain of conjugate conics of length n = 6 is a miraculous
chain: It carries closed Poncelet quadrilaterals and the sixth dual of the first Poncelet
quadrilateral is again the first Poncelet quadrilateral.

REMARKS:

(a) Observe, that (Gy'G1)® = I is equivalent to (G7'Gp)® = I. In particular, no
matter whether we start with a Poncelet quadrilateral with vertices on Gg which
is tangential to G1 or the other way round, we always get a closed cycle of dual
Poncelet quadrilaterals.

(b) The relation (Gy'G1)® = I can be rewritten as (G5 G1Gy'G1)? = I. Then, since
we have GlGalGl = Go, we get (G51G2)3 = I. This means that Gg, G2, G4, and
similarly G1,Gs, G5, are closed chains of conjugate conics of length 3 carrying Pon-
celet triangles which are entangled with the Poncelet quadrilaterals sitting the full
chain Gy, G1,Ga, G3, Gy, G5 of length 6.

Proof of Theorem 3.11. The calculations above show that each closed chain of conjugate
conics of length n = 6 carries closed Poncelet quadrilaterals. Thus, we have only to
prove that the sixth dual of the first Poncelet quadrilateral is again the first Poncelet
quadrilateral.

Let Gy and G7 be such that (G61G1)6 = 1. To simplify the notation let A := GalGl,
ie., AS =1, and assume A3 # I.

Now, let zg and x1 be two opposite vertices of a Poncelet quadrilateral Q on Gy which
is tangent to Gp. By definition of A we get that the image Q' of Q under A® is again
a Poncelet quadrilateral on Gy which is tangent to G1, namely the sixth dual of Q). Let
Yo = A3z and y; := A3z be two opposite vertices of Q'. If yg = xo (or yo = 1), then
y1 = x1 (or y1 = o) and we are done. Otherwise, let gy and g1 be the lines joining xy &
and z1 & y; respectively, let hg and hy be the lines joining x & x1 and yg & y; respectively,
and let jp and j; be the lines joining zg & y1 and z1 & yo respectively.
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Figure 12: The two conics with the two Poncelet quadrilateral.

By definition, A3y = zg, A%y; = x1, A% maps go to go and g to g1, A% maps hg to hy (and
vice versa), and A% maps jo to j1 (and vice versa). Now, let 2,2/, 2” be the intersecting
points of gy & g1, ho & h1, and jo & j1 respectively. Then A%z = 2, A32' = 2/, and A32' = 2/
Hence, either A% = I, which contradicts our assumption, or z1 = yo and x¢ = ¥, which
shows that the quadrilaterals Q and @’ are identical. q.e.d.

Like for triangles we can show that all miraculous chains of Poncelet quadrilaterals are of
fixed length:

ProrosITION 3.12. If Go, G1 induces a closed chain of conjugate conics of length n which
carries Poncelet quadilaterals, then n = 6.

Proof. By Lemma 3.4, D()) is of the form (A + ¢)(A? + 2)a + 1), where a = cos(27(/n),
e==+1,and £ € {1,2,..., 252} satisfies

(4,n)=1 ife=1
(¢,n/2) =1 and fn/2 even ife = —1.

Hence, by the Cayley criterion for quadrilaterals we get that a is a solution of 8a3 — 4ea? —
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10a + 5¢ = 0, which implies that the only possible value for a is /2. It follows that each
miraculous chain of Poncelet quadrilaterals must be of length n = 6. q.e.d.

REMARK: By Lemma 3.4 together with the Cayley Criterion Theorem 3.3 one can decide
if for a given n a closed chain of conjugate conics of length n which carries Poncelet k-gons
exists or not. We have been looking for more such miraculous chains, but could not find
any other. It is conceivable that, apart from the two cases we found in Theorem 3.6 and
Theorem 3.11 respectively, no other miraculous chains exist.
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