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Single- or multistage regulation in complex life cycles:
does it make a difference?
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Data on the different stages of complex life cycles are often rather unbalanced,
especially those concerning the effects of density. How does this affect our under-
standing of a species’ population dynamics? Two discrete three-stage models with
overlapping generations and delayed maturation are constructed to address this
question. They assume that survival or emigration in any life stage and/or reproduc-
tion can be density dependent. A typical pond-breeding amphibian species with a
well-studied larval stage serves as an example. Numerical results show that the
population dynamics resulting from density dependence at a single (e.g. the larval)
stage can be decisively and unpredictably modified by density dependence in addi-
tional stages. Superposition of density-dependent processes could thus be one reason
for the difficulties in identifying density dependence in the field. Moreover, in a
simulated source-refuge system with habitat-specific density-dependent dispersal of
juveniles density dependence in multiple stages can stabilize or destabilize the
dynamics and produce misleading age structures. From an applied perspective this
model shows that excluding multistage regulation prematurely clearly affects our
ability to predict consequences of human impacts.

B. Hellriegel, Zoological Inst. and Zoological Museum, Uni6. of Zurich, Winterthu-
rerstr. 190, CH-8057 Zurich, Switzerland (barhell@zool.unizh.ch).

Understanding how natural populations are regulated
remains a challenge for ecologists and those concerned
about the decline of biodiversity. A population is regu-
lated if its fluctuations in size are bounded, with the
limitation resulting from potentially stabilizing density-
dependent processes (Berryman 1991, Murdoch 1994).
Unfortunately, detecting density dependence and regu-
lation in the field poses problems, such as finding the
appropriate spatial and temporal scale (Turchin 1990,
Pechmann and Wilbur 1994, Ray and Hastings 1996)
and identifying the relevant physiological or life cycle
stage(s) at which it occurs (Wilbur 1980, Metz and
Diekmann 1986). It is unclear whether regulation is
typically achieved by stabilizing mechanisms within a
single population or through metapopulation dynamics
(Murdoch 1994), how important delayed as opposed to
direct density dependence is (Turchin 1990), and
whether single- or multistage regulation is more preva-

lent. Multistage regulation here means multistage den-
sity dependence where density-dependent processes in
more than one life stage decisi6ely influence the popula-
tion growth curve, e.g. the bounds between which it
fluctuates and the type of dynamics that results.

Species with several life stages are excellent subjects
for investigating population regulation (Wilbur 1980,
Smith 1983) as their complex life cycle often consists of
two or more temporally and spatially distinct phases
adapted to growth, dispersal or reproduction. Conse-
quently, the question of when regulation occurs is well
defined. However, data on the different stages of ani-
mals with complex life cycles are often rather unbal-
anced, especially those concerning the effects of density
(e.g. Ray and Hastings 1996). Pond-breeding amphibi-
ans are a good example illustrating this point. An
aquatic herbivorous larval stage with rapid growth and
high mortality is followed by an insectivorous or car-
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nivorous terrestrial phase adapted to dispersal (mostly
juveniles) and reproduction. Dispersal ranges are re-
stricted and terrestrial individuals can be marked indi-
vidually. Nevertheless, extensive field studies on
juveniles and adults are still remarkably scarce (but see
e.g. Smith 1987, Berven 1990, Berven and Grudzien
1990). Existing time series are usually short (see Meyer
et al. 1998), survival estimates are often unreliable (e.g.
Riis 1991) and experimental studies after metamorpho-
sis have either investigated behaviour or physiology in
the laboratory or addressed questions on breeding ac-
tivity, reproductive performance, homing and orienta-
tion. On the other hand, Semlitsch et al. (1996) cite
‘‘several excellent field studies [that] have clearly
demonstrated the primacy of density-dependent growth
and survival in larval amphibians’’. These results are
supported by a wealth of tank and laboratory experi-
ments (e.g. Wilbur 1980 reviews earlier work) strongly
suggesting that regulation occurs at the larval stage.
The one existing experimental field study directly ad-
dressing both aquatic and terrestrial (up to first repro-
duction) density dependence finds effects of density in
both phases in one of two salamander species (Pech-
mann 1994). This leaves open whether regulation oc-
curs only in the larval phase, the terrestrial phase or
both (Wilbur 1980, Semlitsch et al. 1996).

Unfortunately, unbalanced data on the effects of
density on different stages of a complex life cycle seem
to enforce a tendency to assume single-stage regulation.
How does this affect our understanding of a species’
population dynamics? To address this question I use
mathematical models to compare the consequences of
density dependence and regulation in one or several
stages on population dynamics. l assume an organism
with overlapping generations, delayed maturation, dis-
crete breeding seasons and a life cycle in which it is
important to distinguish three life stages instead of the
usual two, e.g. larvae grow, juveniles disperse and
adults reproduce. The resulting three-stage models be-
long to a large family of discrete-time stage-structured
models with density dependence (see e.g. Caswell 1989
for an introductory review). The exponential form of
density dependence relates this approach more specifi-
cally to the two-stage models, for instance, of Hassell
and Comins (1976) for two competing species, of Ro-
driguez (1988 for Drosophila), Wilbur (1996 for pond-
breeding amphibians) and Higgins et al. (1997 for
Dungeness crabs) for competition within species, or to
the single-stage model of Hastings (1993) with density-
independent dispersal. In the present study the first
model more generally studies the influence of density
dependence and regulation at one or more life stage(s)
on the dynamics of an isolated population. It is sub-
jected to a systematic numerical investigation, while a
variant of it is only used to exemplify possible conse-
quences of multistage regulation in a more realistic
setting with two connected habitats of different quality.

Although the examples refer to pond-breeding amphibi-
ans the conclusions can be generalized.

The models

The two discrete-time models describe the population
dynamics of an organism with three life stages and
discrete breeding seasons. The census is taken at the
start of the breeding season (t). The sex ratio is as-
sumed to be 1:1. Adults (A) breed yearly but only a
proportion sA survives until the next season (t+1).
Juveniles have a two-year cycle: In the first year larvae
hatch from eggs (H), undergo metamorphosis (L) and
grow into first year juveniles (J). During the second
year surviving juveniles of both sexes reach maturity
and those that survive join the adult population in their
third year (maturation delay). Breeding results in a
fixed number c of hatchlings per female and season (c
incorporates clutch size, fertilization rate and zygote
survival). Female reproduction can be affected by den-
sity (exponential term in eqs (1a) and (4a)). Survival
after hatching is described by a constant rate for each
life stage (sL, sJ1, sJ2, sA) which is multiplied by a
density-dependent factor in case of intra-stage competi-
tion (exponential terms in eqs (1b)–(3) and (4b)–(6)).
The coefficient b indicates the presence or absence of
competition (b=1 or 0), while K determines its
strength. The effect of density is a reduction in popula-
tion size resulting either from increased mortality or
emigration or from reduced reproduction. Mathemati-
cally more tractable, but biologically less intuitive
rescaled versions of model 1 (see Appendix) are used to
study the dependence of the dynamics on the key
parameter R which incorporates survival up to maturity
and hatchling number per adult. All parameters are
defined in Table 1.

Model 1 for a single population

This model is used to study the influence of density
dependence in different life stages on the dynamics of
an isolated population (no immigration). It is a mathe-
matical formulation of the above assumptions. For the
ease of their accessibility I give a separate equation for
each life stage instead of combining everything into a
single difference equation for adults.

H(t+1)=c exp
�

−bB

A(t)
KB

n A(t)
2

(1a)

larvae hatching=hatchlings per clutch×competition
effect on reproduction× females

L(t+1)=sL exp
�

−bL

H(t+1)
KL

n
H(t+1) (1b)
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metamorphs= larval survival×effect of larval
competition× larvae

J(t+1)=sJ1 exp
�

−bJ

L(t+1)
KJ

n
L(t+1) (2)

1st-year juveniles=1st-year survival×effect of meta-
morphic competition×metamorphs

A(t+1)=sA exp
�

−bA

A(t)
KA

n
A(t)+sJ2 J(t) (3)

adults=adult survival×effect of adult competition×
adults+2nd-year survival×mature 2nd-year juveniles

Notice that due to delayed maturation last year juve-
niles are added to the adult population (J(t) not
J(t+1) in (3)).

Model 2 for two habitats of different quality

This extension of model 1 is used to exemplify the
consequences of multistage regulation in a more realis-
tic setting. Two habitats differ with respect to density
dependence in larval survival, in dispersal of first- and
second-year juveniles (replacing density-dependent juve-
nile survival) and in reproduction of females. They lie
within the dispersal range of juveniles. First-year juve-
niles disperse to avoid competition, e.g. for resources or
hibernation sites, while mature juveniles evade breeding
competition (bB) with their own cohort and other
adults. A fraction sJ of the dispersers survives (cost of
dispersal). Adults do not disperse and their survival is
assumed to be density independent.

With ‘i ’ and ‘n ’ indicating the two habitats (if i=1
then n=2 and vice versa), the system of difference
equations has the following form:

Hi(t+1)=c exp
�

−bB

A(t)
KB

n A(t)
2

larvae hatching in habitat i (4a)

Li(t+1)=sLi exp
�

−bLi

Hi(t+1)
KLi

n
Hi(t+1)

metamorphs in habitat i (4b)

Ji(t+1)=sJ1i exp
�

−bJi

Li(t+1)
KJi

n
Li(t+1)

+sJ sJ1n

�
1−exp

�
−bJn

Ln(t+1)
KJn

n�
Ln(t+1)

(5)

1st-year juveniles in habitat i=1st-year survival
× fraction staying despite competition
×metamorphs in habitat i+dispersal survival
×1st-year survival×competition avoidance
×metamorphs in habitat n

Ai(t+1)

=sAiAi(t)+sJ2

�
exp

�
−bBi

sJ2Ji(t)+Ai(t)
KBi

n
Ji(t)

+sJ

�
1−exp

�
−bBn

sJ2Jn(t)+An(t)
KBn

n�
Jn(t)

n
(6)

adults in habitat i=adult survival×adults
in habitat i+2nd-year survival× [fraction staying
despite breeding competition×matures in habitat i
+survival during dispersal×avoidance of breeding
competition×matures in habitat n ]

Numerical solutions for both models were obtained
with the software package RAMSES2.2 © 1994 A.
Fischlin (Fischlin 1991).

Numerical results

Density dependence at one or more life stage(s) in
a single population (model 1)

Single-stage regulation is possible in any stage, namely
if either survival/emigration of larvae or juveniles or
female reproduction is density dependent. It results in
different types of dynamics (see below). However, pop-
ulation growth cannot be controlled with density-de-

Table 1. List of model parameters.

A adult population [initial size=100]
J first-year juveniles
L metamorphs
H hatched larvae (tadpoles)
c number of hatchlings per female per

season
sL, sJ1, sJ2, sA survival rates of larvae, first- and sec-

ond-year juveniles and adults

dynamic key parameterR :=
sJ2sJ1sLc

2 (rescaled model in Appendix)
indicator of intra-stage competition inbL, bJ, bA, bB

larvae, juveniles, adults and breed-
ing females [b=1 with competition,
=0 without]

KL, KJ, KA, KB carrying capacity for larvae, juveniles,
adults and breeding females

kBL, kLJ, kAL capacity ratios (rescaled model)

kBL=
cKB

2KL

, kLJ=
sLKL

KJ

, kAL=
cKA

2KL

sJ survival during juvenile dispersal
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pendent survival of adults: the population either grows
exponentially or dies out (see Appendix). To study
multistage regulation I take density dependence in the
larval stage for granted (see Introduction) and combine
it with density dependence in other stages. This addi-
tional density dependence modifies the single-stage pop-
ulation growth curve by shifting the mean and by
changing the amplitude and/or regularity of the fluctua-
tions. While Fig. 1 gives explicit examples for the types
of possible growth curves, Figs 2–4 show the general
dynamic patterns depending on the key parameter R,
density-independent adult survival (sA) and the capacity
ratios (kBL, kLJ, kAL, see Table 1).

In the example (Fig. 1) parameter values are chosen
as follows: The survival constants (s) are set to reason-
able values for frogs (see e.g. Wilbur 1980, Berven
1990). In case of competition they are increased to
compensate for the additional density-dependent mor-
tality, e.g. larval survival from sL=0.07 to sL=0.3.
The carrying capacities (K) are chosen to achieve mean
population sizes between 900 and 1000 adults with
density dependence in a single stage. For studying
multistage regulation the parameters used for the re-
spective single stages are just combined. Then single-
stage regulation (Fig. 1a) as well as all two-stage
combinations (density dependence in larvae and juve-
niles, larvae and female reproduction, larvae and
adults-not shown) produce irregular fluctuations.
Three-stage density dependence of tadpole, juvenile and
adult survival results in periodic cycles, while an equi-
librium is reached when density-dependent reproduc-
tion replaces density-dependent adult survival (Fig. 1b).

Note that the same dynamic pattern can be achieved
in different ways: e.g. equilibrium population sizes can
result from density dependence in a single stage (black
bars in Figs 2a, 3a), in two stages, combining an
equilibrium in one stage with irregular fluctuations in
the other (not shown), or in three stages, combining
three times irregular dynamics (Fig. 1b).

Figs 2–4 more generally show how adult population
dynamics depends on R, on density-independent adult
survival (sA) and on the capacity ratios (kBL=cKB/
2KL ; kLJ=sLKL/KJ ; kAL=cKA/2KL), when density af-
fects more than one stage. According to their definition
these capacity ratios compare the maximum outcome of
one stage (numerator) with the capacity of a later stage
(denominator). Therefore a capacity ratio of one is
always given as a reference, while the other capacity
ratios are chosen to be the same as in Fig. 1. In Figs 2
and 3 survival/emigration of larvae and juveniles and/
or female reproduction are density dependent; in Fig. 4
adult survival or emigration instead of reproduction is
density dependent. The situation shown in Fig. 2 differs
from that in Fig. 3 by representing the population
dynamics without a maturation delay, implying that
there is no additional time lag above that inherent in

Fig. 1. Influence of density dependence (d-d) in one or more
life stages on the dynamics of an isolated (frog) population
(model 1). Lines and parameters for resealed model (see
Appendix): (a) Single-stage density dependence in larval sur-
vival (thin solid; R=36), juvenile survival (dashed; R=45) or
female reproduction (thick solid; R=8.4). All three popula-
tion growth curves fluctuate irregularly, but within bounds
and therefore are regulated. (b) Three-stage density depen-
dence (R=45, capacity ratio kLJ=2.4): d-d in larval and
juvenile survival combined with d-d in reproduction (solid;
kBL=2) or adult survival (dashed; kAL=0.5). The non-equi-
librium curve is cyclic. Both populations are regulated but they
fluctuate within different bounds and show different dynamics
than the single-stage curves. They are examples of multistage
regulation as defined in the text. Legend: density-independent
survival ‘s ’; carrying capacity ‘K ’; for the choice of values see
text.

discrete-time models. The major effect of the time lag is
to increase the dynamic complexity. As a consequence
the difference between density dependence in one or
several stages is more pronounced with a time lag.

With a time lag there seems to be a general tendency
for less irregular dynamics with density dependence in
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several stages (Figs 3, 4). This effect is more pro-
nounced at extreme values of density-independent adult
survival if larvae, juveniles and/or reproduction are
affected by density (Fig. 3). High adult survival (sA\
0.7) leads to equilibrium populations sizes over a large
range of R values independent of a time lag and the
number of stages involved (Figs 2, 3). Low adult sur-
vival (sAB0.3) implies equilibria and cyclic dynamics
over large ranges of R (Fig. 3). When adults are af-
fected by density the picture is completely different:
density-independent adult survival has no influence on
the range of R values leading to population equilibria
(Fig. 4). Here mainly the number of stages involved and

the capacity ratios determine the dynamics; except that
again low adult survival (sAB0.3) implies equilibria
and cyclic dynamics over large ranges of R (compare
Fig. 3). Low values of R generally result in equilibrium
population sizes. In Figs 2–4 this range for R is in-
creased by density dependence in several stages at least
for moderate to high adult survival rates and, depend-
ing on the capacity ratios, also for low adult survival.

The equilibrium population size generally increases
with increasing density-independent adult survival, al-
though much less so when adults are affected by density
(Fig. 4), and it is higher for capacity ratios less than
one. Equilibrium population size decreases with the

Fig. 2. Influence of adult
survival and key parameter R
on adult population dynamics
– rescaled model 1 but
without time lag. This case
serves as a point of reference
to distinguish between the
effects of the time lag and of
density dependence in
additional life stages. R
incorporates survival up to
maturity and hatchlings per
adult. Equilibrium population
sizes N* for sA=0.5 and
R=5 are given in brackets.
Generally equilibria are
followed by cyclic dynamics.
(a) Single-stage density
dependence in larval or
juvenile survival or in female
reproduction [N*=2.30].
(b), (c) Two-stage density
dependence: in larval and
juvenile survival or in larval
survival and reproduction
with capacity ratios of (b) kBL
or kLJ=1 [N*=2.04] and (c)
kBL or kLJ=2.4 [N*=1.5].
(d), (e) Three-stage density
dependence: in larval and
juvenile survival and
reproduction with (d)
kBL=kLJ=1 [N*=1.78] and
(e) kBL=2, kLJ=2.4
[N*=0.76] (as in Fig. 1b).
Shading: equilibrium (black);
irregular fluctuations, i.e.
quasiperiodic cycles or chaos,
(grey); cycles of even period
(white).
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Fig. 3. Influence of adult
survival and key parameter R
on adult population dynamics
– rescaled model 1 with time
lag. R as in Fig. 2.
Equilibrium population sizes
N* for sA=0.5 and R=5 are
given in brackets. Generally
equilibria are followed first by
irregular and then by cyclic
dynamics. (a) Single-stage
density dependence in larval or
juvenile survival or in female
reproduction [N*=2.30].
(b), (c) Two-stage density
dependence: in larval and
juvenile survival or in larval
survival and reproduction with
capacity ratios of (b) kBL or
kLJ=1 [N*=2.04] and (c) kBL
or kLJ=2.4 [N*=1.5].
(d), (e) Three-stage density
dependence: in larval and
juvenile survival and
reproduction with (d)
kBL=kLJ=1 [N*=1.78] and
(e) kBL=2, kLJ=2.4
[N*=0.76]. Shading:
equilibrium (black); irregular
fluctuations (grey); cycles of
even (white) or odd (stripes)
period.

number of stages at which density dependence occurs,
especially with capacity ratios greater than one. This
effect again is less pronounced with density dependence
in adult survival/emigration.

Example for multistage regulation in two habitats
of different quality (model 2)

Two extremely different habitat types are chosen (Fig.
5): Habitat H1 is characterized by high larval competi-
tion (KL1=1200) and breeding competition resulting in

dispersal of second year juveniles (KB1=600), while
first year juveniles and adults are unaffected by density
(bJ1=bA1=0). Habitat H2 has less larval competition
(KL2=120000) and competition between first year juve-
niles (KJ2=15000), but second year juveniles and
adults are unaffected by density (bB2=bA2=0). I also
look for additional effects of density-dependent repro-
duction in H2 (KB2=600; see arrows in Fig. 5).

Without dispersal (sJi=0 in eqs (5), (6)), population
1 fluctuates around very low numbers, while population
2 reaches a considerably larger equilibrium size (H1:
�15/�30, H2: 856/2595 adults/juveniles; Fig. 5a).
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With additional density dependence of female repro-
duction in H2 the equilibria in this habitat increase
(1146/3477 adults/juveniles; see arrows).

If first and second year juveniles can leave the respec-
tive unfavourable sites the dynamics change. With 30%
survival during dispersal the population sizes in both
habitats show damped oscillations finally reaching equi-
libria (H 1: 128/418, H2: 866/2560 adults/juveniles; Fig.
5b). Dispersal stabilizes the dynamics of population 1
and its size increases by more than tenfold (adults plus
juveniles), while population 2 decreases slightly. With
density-dependent reproduction in H2 the equilibria are
higher (H1: 212/1308, H2: 1257/3441; see arrows). Sur-
vival during dispersal of 50% results in fluctuating
dynamics in both habitats (H1: �149/�932, H2:
�900/�2370 means for adults/juveniles; Fig. 5c). Dis-
persal destabilizes the dynamics of population 2. In H1
juvenile numbers are large compared to adult numbers
(factor 6.3; H2: 2.6). With density-dependent reproduc-
tion in H2 equilibria are reached at both sites (H1:
219/1868, H2: 1441/3352; see arrows).

Discussion

In the light of unbalanced data on the effects of density
on different stages of complex life cycles I use mathe-

matical models (1) to study the influence of density
dependence at one or more life stages on the population
dynamics and (2) to exemplify possible practical impli-
cations of multistage regulation in a heterogeneous
environment. Here density can affect the main events of
a three-stage cycle with delayed maturation: survival or
emigration in any stage and/or reproduction of females.

Regulation is possible at any single stage: either
through density-dependent larval or juvenile survival/
emigration or through density-dependent reproduction
of females. However, due to the fact that density depen-
dence occurs after breeding, exclusive regulation
through density-dependent survival or emigration of
adults is impossible. Single-stage regulation results in
different types of dynamics: (1) in case of low to
moderate density-independent adult survival, equilibria
for low values of R are followed by a succession of
irregular fluctuations (quasiperiodic cycles or chaos)
and periodic cycles for moderate to high R values; (2)
with higher adult survival equilibria are (mainly) fol-
lowed by irregular fluctuations. With density depen-
dence in multiple stages the dynamics also depends on
the ratios between the stage-specific carrying capacities.
When density affects survival or emigration of larvae
and juveniles and/or reproduction there is a tendency
towards smaller ranges of R producing irregular fluctu-
ations, at least for low (more equilibria and periodic

Fig. 4. Influence of adult
survival and key parameter R
on adult population dynamics
– rescaled model 1 with time
lag (see Appendix). R as in
Fig. 2. Equilibrium population
sizes N* for sA=0.5 and
R=5 are given in brackets.
Single-stage regulation at the
adult level is not possible (see
text). Two-stage density
dependence in larval and adult
survival with capacity ratios of
(a) kAL=1 [N*=1.70] and
(b) kAL=0.5 [N*=3.26].
Three-stage density
dependence in survival of
larvae, juveniles and adults with
(c) kLJ=kAL=1 [N*=1.40]
and (d) kLJ=2.4, kAL=0.5
[N*=1.68]. Shading:
equilibrium (black); irregular
fluctuations (grey); cycles of
even (white), odd (stripes) or
mixed (hatched) period.
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cycles) and high density-independent adult survival
rates (more equilibria). Without a maturation delay the
dynamics are much more regular (compare Higgins et
al. 1997) and thus the effects are less pronounced. A
partly different picture arises when survival or emigra-
tion of adults instead of reproduction is density depen-

dent. In this case mainly the number of stages involved
and the capacity ratios determine the dynamics. In
general, the equilibrium population size increases with
density-independent adult survival and (slightly) with R
and it decreases with the number of stages at which
density dependence occurs. In case of fluctuations the
variability in population size, that is highest divided by
lowest observed density, increases with R and decreases
with the number of density-dependent stages. That is,
density dependence in additional life stages generally
changes at least the equilibrium or mean population
sizes, their variability and the time course of the popu-
lation growth curves compared to single-stage density
dependence. As long as these changes are small to
moderate it might still be possible to identify the one
stage where most of the regulation occurs. It then
would be single-stage regulation with the additional
density dependence in other stages acting as modifiers.
However, when density dependence in multiple stages
results in a completely different dynamic pattern of
population growth curves compared to any of the
single-stage curves, multistage regulation would prevail.
Curves generated by multistage regulation therefore
cannot even qualitatively be predicted assuming density
dependence at a single (e.g. the larval) stage.

One reason for the general difficulties in identifying
density-dependent processes in the field might therefore
be that multistage regulation is more prevalent than we
generally assume and that the observed changes in
population size result from the superposition of density-
dependent processes at several levels. Moreover to iden-
tify the ecological mechanisms explaining population
fluctuations it is important to know which stages and
processes are affected by density (Turchin 1999). In this
model the decisive difference occurs in the adult stage
between density dependence in reproduction and sur-
vival or emigration. Results from a data-based simula-
tion model describing seven life stages of the codling
moth (Laspeyresia pomonella) are most sensitive to
density dependence in fecundity and first-instar survival
(Brown et al. 1978). A, ström et al. (1996) show that
even the relative temporal order of sequential density-
dependent events has profound effects on the resulting
dynamics if three or more of them occur within the
same year/time step. Although due to the maturation

Fig. 5.

Fig. 5. Influence of multistage regulation including density-de-
pendent dispersal on the dynamics of juvenile and adult frogs
(model 2). Habitat H1 is suitable for first year juveniles, but
not for breeding because of high larval competition (R=24),
while habitat H2 is a good breeding site, but unsuitable for
first year juveniles (R=18, kBL=2, kLJ=2.4; compare Fig.
3e). Shown are the resulting population sizes (a) without and
(b), (c) with dispersal. In (b) 30% of the dipsersers survive, in
(c) 50%. – Lines: H1 (dashed), H2 (solid); all juveniles (thin),
adults (thick). Arrows: equilibria in case of density-dependent
reproduction in H2: all juveniles (J), adults (A); numbers
indicate habitats. Legend: density-independent survival ‘s ’;
carrying capacity ‘K ’.

246 OIKOS 88:2 (2000)



delay this precondition is not met here, their results
emphasize as well the importance of knowing the num-
ber and type of processes that are density dependent.
Currently available tests for statistically significant den-
sity dependence (e.g. Dennis and Taper 1994) require
long time series of population estimates (at least 20 to
30 years) and do not indicate at which stage(s) regula-
tion occurs or provide information on demographic
rates. Leirs et al. (1997) use a 24-month series of
capture-mark-recapture data on rodents for estimating
survival probabilities from statistical models with and
without density dependence. These estimates are then
combined into a two-stage population model. Accord-
ing to the results here the success of their approach in
predicting population dynamics critically depends on
the adequate choice of stages and processes (e.g. sur-
vival, maturation, reproduction) to be included into the
model. The relationship between age at maturity and
the age at which a sharp reduction in adult survivorship
occurs might be another factor that should be ac-
counted for (Higgins et al. 1997).

The example studied by the second model is meant to
illustrate possible implications of multistage regulation.
It accounts for the fact that dispersal is an important
feature of many complex life cycles. The results show
that multistage regulation including habitat-specific
density-dependent dispersal of juveniles can have con-
siderable influence on the dynamics of adjacent popula-
tions. The practical consequences – e.g. in terms of site
removal and habitat fragmentation – become very
striking if we take the time series of Fig. 5b, c as real
data. Unaware of the underlying processes and assum-
ing density effects on larvae only, we would assume two
independent populations regulated at the larval stage,
whereas, in fact, we have two tightly coupled subpopu-
lations: a source emitting immature juveniles to a
‘refuge’ from which they partly return after maturation.
This feedback nature intensifies the coupling and distin-
guishes this example from a classical source/sink con-
stellation (Pulliam 1988, Dias 1996). Here, depending
on survival during dispersal, the fluctuating dynamics
in the refuge either destabilizes the stable source popu-
lation or is stabilized through it (for more detailed
work on the dynamic consequences of dispersal see e.g.
Davis and Howe 1992, Gyllenberg et al. 1993, Hastings
1993, Doebeli 1995). Moreover, interpreting the age
structure at just one site would also mislead us here.
Low adult and relatively high juvenile numbers in the
refuge are not indicating a young and growing popula-
tion (Fig. 5c). That is, without following both popula-
tions simultaneously for at least two years (maturation
delay) and monitoring dispersal, we would have great
difficulties to find out ‘the reality’. Unfortunately, many
studies on amphibians (and maybe other organisms
with complex life cycles) do not account adequately for
delayed maturation and interconnectedness of
populations.

The results of this study clearly show the difference it
makes whether density dependence and population reg-
ulation occur at one or more life stages; the effects are
more pronounced if maturation is delayed. Even if
regulation predominantly occurs in a specific stage, the
time course and range of population fluctuations might
be decisively and unpredictably modified by density-de-
pendent processes at other stages. If in one stage habi-
tat-specific dispersal is density dependent, the
modifications or even regulation itself might mainly
result from the densities and dynamics at neighbouring
sites. Prematurely excluding multistage regulation
should therefore affect our ability to predict conse-
quences of habitat fragmentation and thereby constrain
realistic actions to be taken in species conservation.
Thus, to better understand the population dynamics of
species with complex life cycles, for control of pest
populations and to resolve discussions about human
impacts on species decline (for amphibians see e.g.
Blaustein 1994, Pechmann and Wilbur 1994) we need to
know more about how density affects different life
stages. We urgently need good time series of population
estimates, which means either long(er) series (see Meyer
et al., 1998) or shorter series at the appropriate spatial
scale (Ray and Hastings 1996), and manipulative field
experiments directly addressing density relationships in
each life stage.
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Appendix

Rescaled form of model 1

The aim is to reduce the number of parameters for the
numerical investigations. Roughly speaking survival up
to maturity and hatchling number per adult are com-
bined into the dynamic key parameter R, population
sizes are scaled by the carrying capacities for the
stage(s) of interest and the carrying capacities them-
selves are combined into capacity ratios (for details see
below).

(1) Single-stage density dependence
(a) in larval or juvenile survival/emigration or in female
reproduction

N(t+1)=sAN(t)+R exp[−N(t−1)] N(t−1) (A1)

with R�
sJ2sJ1sLc

2

The non-zero equilibrium is

N*= ln
� R

1−sA

n
(A2)

with N�cA/2KL in case of larval, N�sLcA/2KJ of
juvenile and N�A/KB of reproductive density depen-
dence. The ranking of the carrying capacities does not
necessarily imply the same ranking for the equilibria,
e.g. in Fig. 1 KBBKJBKL but N*J =K*BBK*L. Every-
thing else being equal the three equilibria are identical if
KJ=sLKL and KB= (2/c) KL. The restriction on adult
survival resulting from (A2) is easily fulfilled: sAB1.

(b) in adult survival

N(t+1)=sA exp[−N(t)] N(t)+R N(t−1) (A3)

with N�
A

KA

The non-zero equilibrium is

N*= ln
� sA

1−R
n

(A4)

The inequality R=sJ2sJ1sLc/2B1 resulting from (A4)
implies either unrealistically low survival rates up to
maturity which compensate for larger hatchling num-
bers per female, or, conversely, a very small number of
hatchlings compensating for higher survival rates. Oth-
erwise the population grows exponentially due to the
second term of the sum in (A3).

(2) Two-stage density dependence
(a) in larval and juvenile survival/emigration or in
larval survival/emigration and female reproduction
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X(t+1)=kx exp[−N(t)] N(t) with kx=kLJ or kBL

N(t+1)=sAN(t)+
R

kx

exp[−X(t)] X(t)

and (i) for larvae and juveniles

X�
L

KJ

, N�
cA

2KL

, kLJ=
sLKL

KJ

,

(ii) for larvae and females

X�
H

KL

, N�
A

KB

, kBL=
cKB

2KL

.

The non-zero equilibria are implicitly given through

−N*+ ln
� R

1−sA

n
=kx N* exp[−N* ]

(b) in larval and adult survival/emigration

X(t+1)=kAT N(t) with kAL=
cKA

2KL

N(t+1)=sA exp[−N(t)] N(t)+
R

kAL

exp[−X(t)] X(t)

and X�
H

KL

, N�
A

KA

.

The non-zero equilibria are implicitly given through

−sA+exp[N* ]=R exp[(1−kAL)N* ]

(3) Three-stage density dependence
(a) in survival/emigration of larvae and juveniles and in
female reproduction

L %(t+1)=kBL exp[−A %(t)] A %(t) with kBL=
cKB

2KL

J %(t+1)=kLJ exp[−L %(t+1)] L %(t+1)

with kLJ=
sLKL

KJ

A %(t+1)=sAA %(t)+
R

kLJkBL

exp[−J %(t)] J %(t)

and L %�
H

KL

, J %�
L

KJ

and A %�
A

KB

.

(b) in larval, juvenile and adult survival

L %(t+1)=kAL A %(t) with kAL=
cKA

2KL

J %(t+1)=kLJ exp[−L %(t+1)] L %(t+1)

A %(t+1)=sA exp[−A %(t)] A %(t)

+
R

kLJkAL

exp[−J %(t)] J %(t)
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