Collogue Numerique Suisse Fribourg, April 200

High-order numerical integrators

based on modified differential equations

Gilles Vilmart
(INRIA Rennes & Univ. Geneve)

PhD under the directorship of
Philippe Chartierand Ernst Hairer



Plan of the talk

e Main ideas of theheory of modified differential equations
for the study of geometric integrators.

e We derive efficient high-ordergid body integrators.
Preprocessed Discrete Moser—\Veselov algorithm.

¢ Reducingound-off errors in long time integration.
algorithm based on Jacobi elliptic functions.



Geometric Numerical Integration

A two-dimensional Hamiltonian system,

q = p
p = —VV(g)

with aquartic potential/(¢q) = (¢* — 1)~
HamiltonianH (¢, p) = 2p + (¢ — 1)
— animation

Studied recently in the context of the computation of coajagpoints for the
Martinet case in optimal control.

M. Chyba, E. Hairer, G. Vilmar{J'he role of symplectic integrators in
optimal control, to appear in Optimal control, applications and methods,
2008



Free rigid body equations
. o 0 —az a9
y = /y\[_lya Q=QIy, a= | as 0 —a
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wherel = diag(ly, I, I3) are the moments of inertia.

y = (y1, 92, y3)! angular momentugQ orthogonal matrix.
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wherel = diag(ly, I, I3) are the moments of inertia.

y = (y1, 92, y3)! angular momentugQ orthogonal matrix.

First integrals: Qv,

1

H(y)Z—(y% b yg) and C(y)zl(y%+y§+y§)-
o\T, "I, ' I 2

(HamiltonianandCasimir)



Discrete Moser—Veselov algorithm

0 —az a9

?):/y\[_lya Q:Q[_lya a=| a3 0 —a
— a9 aq 0

DMV (1991)We consideD = diag(d;, do, d3) where
di+dy =13, do+dg=11, d3+dy=Is,

For given(y,, @,.), compute an orthogonal matrix, from
w:D — Dw, = h,
The numerical solution after one step Is then given by

Yn+1 = Wn Yn Wy, Qn—H — Qn Wy, -

It Is symmetric, symplectic, Poisson, and it exactly preserves
first integrals.The only drawback Is its low ordex:



Preprocessed DMV algorithm

Apply the DMV algorithm prder2) with I, replaced by

where1 .
I (1 + h233(yn) + ...+ hQT_QSZr—l(yn))
I

+h2ds(yn) + ...+ B 2 dor_1(yn)

to get an integrator adrder2r.

1,1 1 1 I+ I+ I3
n) — T 3 | | HnI Cn7
#3th) 3(11 I, _g> W)+ =6y, ¢
I+ I, + I 1
da(y,) = H(y, C(1,).
3(Yn) 6T L L (y)g]l]ﬂ3 (Yn)

E. Hairer, G. VilmartPreprocessed Discrete Moser-Veselov algorithm for
the full dynamics of the free rigid body, J. Phys. A, 2006.



Numerical experiment

asymmetric rigid body7, = 0.6, I, = 0.8, I3 = 1.0

10° error angular momentum | 1qp error rotation matrixQ
1073 10-3
Order 4
1076 106
107° 10-9

Cpu time

10 10°°

preprocessed DMV of ordefs 4, 6, 8, 10



Numerical experiment

asymmetric rigid body7, = 0.6, I, = 0.8, I3 = 1.0

error error

angular momentum
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10° rotation matrix)

blue: splitting methods of ordets 4, 6 (composition methods)
black: preprocessed DMV of ordets4, 6, 8, 10



Study of roundoff errors propagation: the DMV algorithm

Probabilistic model (Henrici, 1962): in the absence of a

deterministic source of errors, roundoff errors behave like a
random walk:

Hamiltonian error= O (epsvVhv/'t

o} x10™" Hamiltonian error| 4} x10™"  spatial angula
= momentum erro
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Integrators based Jacobi elliptic functions

In several recent publications (2006, 2007), it is proposed to
Integrate the rigid body motionsing Jacobi elliptic functions
This approach analytically yields the exact solution.
However, a standard implementation shamsunexpected
propagation of round-off errors



Integrators based Jacobi elliptic functions

In several recent publications (2006, 2007), it is proposed to
Integrate the rigid body motionsing Jacobi elliptic functions
This approach analytically yields the exact solution.
However, a standard implementation shamsunexpected
propagation of round-off errors

x10~11  Hamiltonian
error

Ok

stepsx 10°
-1 | | | |

o 1 2 3 4 5
Error per stepx 1.25 x 10717

(machine precisioaps = 27°3 ~ 2 x 1071°)




Explanation: inexact coefficients

The integrator based on Jacobi elliptic functions uses many
constants depending €n I, I3, e.g.

y1(t) = craicn(u, k), y2(t) = coa1SNu, k),  y3(t) = desasdn(u, k),
¢ = VL/(Is5—1), ca=..., c3=...
ap = 2H(y)ls —2C(y), ax=...,
u = /(Is— L)/(I1:I3)ast + ... k=...

The same rounded coefficients are used along the integratiol

In (E. Hairer, R. |. McLachlan & A. Razakarivony, 2007), it is
shown that for implicit Runge-Kutta methodsrdunded
coefficientsa;; andb; are used, then the order conditions are n
exactly satisfied, and this inducasystematic error in
long-time integrations.



New implementation

To reduce the effect of rounding errors, the main idea is to
rewrite the algorithm so that only 3 constants depending on
I, I, I3 are involved.

x 10~ 1 ~standard x 10713 few coefficients
O~ implementation | 1 implementation
. stepsx10° | -1f stepsx 10°

| | | | | | | |
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G. Vilmart, Reducing round-off errors in rigid body dynamics, to appear
iIn Journal of Computational Physics, 2008.
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