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1. Motivation

Our goal is to improve the efficiency of linear and nonlin-
ear solvers in petroleum reservoir simulators by exploiting
physical characteristics intrinsic to the problem:
• Flow is driven by pressure gradients, so an upstream-to-

downstream ordering is possible;
•Upwind discretization allows partial resolution of the non-

linear system on a cell-by-cell basis.

2. Flow in porous media

The flow of n immiscible phases in heterogeneous porous
media is modelled by n nonlinear conservation laws defined
over x ∈ Rk, 1 ≤ k ≤ 3:

∂(φρjSj)

∂t
+∇ · (ρjvj) = ρjqj, j = 1, . . . , n, (1)

with phase velocities vj given by Darcy’s law

vj = −Kλj(S1, . . . , Sn)
[
∇p− ρjg

]
. (2)

We close the system with initial and boundary conditions,
as well as the saturation constraint

∑
j Sj = 1. The pri-

mary variables are p (pressure) and Sj for j = 1, . . . , n − 1
(saturation). The equations are discretized using:
• Finite volumes with conservative numerical fluxes,
• Phase-based upwinding for λj(S1, . . . , Sn) (Fig. 3),
• Implicit time stepping (Backward Euler) for both Sj and p.

The standard nonlinear solver is Newton’s method, which
is locally quadratically convergent but can diverge for bad
initial guesses.
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Figure 1: A heterogeneous oil reservoir.
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Figure 2: Flow through a porous medium.
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Figure 3: Countercurrent flow.

3. Potential ordering

The flow direction of phase j is completely determined by
∇Φj, where

Φj = p− ρjgTx (3)
is the phase potential. If the control volumes are numbered
in decreasing order of Φj, then the upwind discretization
ensures

f
j
i is a function of S

j
l =⇒ l ≤ i. (4)

So the residual functions look like
f

j
1 (S

j
1, p1, . . . , pN ) = 0

f
j
2 (S

j
1, S

j
2, p1, . . . , pN ) = 0

...

f
j
N (S

j
1, . . . , S

j
N , p1, . . . , pN ) = 0

(5)
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Figure 4: Ordering from highest to lowest potential.

4. Reduced-order Newton method

Suppose [∂λi/∂Sj] is a lower-triangular matrix. Then the
residual functions for all phases can be written as

f1
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1, p1, . . . , pN ) = 0

f1
2 (S1

1, S
1
2, p1, . . . , pN ) = 0

...
f1
N (S1

1, . . . , S
1
N , p1, . . . , pN ) = 0

f2
1 (S1

1, . . . , S
1
N , S2

1, p1, . . . , pN ) = 0
...

fn−1
N (S1

1, . . . , S
1
N , . . . , Sn−1

1 , . . . , Sn−1
N , p1, . . . , pN ) = 0

fn
1 (S1

1, . . . , S
1
N , . . . , Sn−1

1 , . . . , Sn−1
N , p1, . . . , pN ) = 0

...
fn
N (S1

1, . . . , S
1
N , . . . , Sn−1

1 , . . . , Sn−1
N , p1, . . . , pN ) = 0.

(6)
If p1, . . . , pn are known, we can solve the first (n − 1) × N

equations for S
j
i by forward substitution. Thus, the first

(n − 1) × N equations can be seen as constraints that im-
plicitly define the functions

S
j
i = S

j
i (p1, . . . , pN ). (7)

The last N equations become

fn
i (S(p1, . . . , pn), p1, . . . , pn) = 0, i = 1, . . . , N. (8)

Newton’s method is used to solve (8). The resulting method
is more efficient because it avoids costly time-step cuts due
to non-convergence. Global convergence can be proved for
2-phase incompressible 1D flow without gravity [3]:
1. If the λj are uniformly convex, then the reduced Newton

method converges globally for large ∆t;
2. Suppose the λj are convex. Then there exists a set of

constraint equations (which can be chosen dynamically)
such that the reduced Newton method converges glob-
ally for all ∆t.
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Figure 5: Performance of reduced Newton method [2].

5. Linear preconditioning

To solve the linear system within each Newton iteration, it-
erative methods (e.g. GMRES) are preferred for large-scale
(esp. 3D) problems. The Constrained Pressure Residual
(CPR) method [1] exploits the saturation-pressure coupling
via the two-stage preconditioner

M−1 = M−1
2 (I − AM−1

1 ) + M−1
1 , (9)

which is derived from the stationary iteration

M1x
(k+1/2) = (M1 − A)x(k) + b, (10)

M2x
(k+1) = (M2 − A)x(k+1/2) + b, (11)

where
•M1 = Elliptic solve on decoupled pressure system (AMG),
•M2 = Block ILU preconditioner on global system.
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Figure 6: CPR vs. ILU(0) for a simple 2-phase problem.

The above figure shows that CPR is nearly grid-
independent, unlike ILU(0). For larger and more complex
problems, CPR convergence can be improved by reorder-
ing the cells from upstream to downstream before com-
puting ILU(0) factors for M2. For cocurrent 2-phase flow [3]:
1. A block ILU(0) factorization exists whenever the cells are

ordered from upstream to downstream, and it is exact
with respect to saturation.

2. If L1, U1 and L2, U2 are two ILU factors computed based
on two topological orderings of the same flow graph, then
L1, L2 (also U1, U2) are identical up to permutation.

Hence the ordering is optimal and reduces the sensitivity
of CPR with respect to flow configurations, as shown in the
examples below.
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Figure 7: Ordering effects on CPR-ILU preconditioner.
Its = Total GMRES iters., RT = Running time (sec).
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