Discretization of Generalized Convection-Diffusion

H. Heumann R. Hiptmair

Seminar für Angewandte Mathematik ETH Zürich

Colloque Numérique Suisse / Schweizer Numerik Kolloquium 2008

Generalized Convection-Diffusion

scalar convection diffusion:

 $-\varepsilon \Delta u + \beta \cdot \operatorname{grad} u = f$ in Ω

in Differential Forms:

 $d * d\omega_0 + * L_{\beta} \omega_0 = f \quad \text{in } \Omega$

Generalized Convection-Diffusion

scalar convection diffusion:

 $-\varepsilon \Delta u + \beta \cdot \operatorname{grad} u = f \quad \text{in } \Omega$

Goal: convection diffusion for p forms ω_p What is a Lie derivative?

$$L_{\beta} = ?$$

Lie derivatives

directional derivative $(\beta \cdot \operatorname{grad} u)(\mathbf{x}) = \lim_{t \to \infty} \frac{u(\mathbf{x} + t\beta) - u(\mathbf{x})}{t}$ Lie derivative L_{β} (transport of forms)

with respect to flow φ_t of velocity field β :

$$\int_{M_p} L_{\beta} \omega_p := < L_{\beta} \omega_p, M_p > := \lim_{t \to 0} \frac{<\omega_p, \varphi_t(M_p) > - <\omega_p, M_p >}{t}$$

Cartan magic formula

$$L_{\beta} = i_{\beta}d + \overline{di_{\beta}}$$

with contraction i_{β} (Bossavit)

$$< i_{eta}\omega_{p}, M_{p-1}>:= \lim_{t o 0} rac{<\omega_{p}, \textit{Ext}_{t}(M_{p-1},eta)>}{t}$$

 $\mathsf{Ext}_t(M_1,\beta)$

 $\varphi_t(M_1)$

 M_1

Generalized Convection-Diffusion

scalar convection diffusion:

 $-\Delta u + \beta \cdot \operatorname{grad} u = f$ in Ω

in Differential Forms:

$$d * d\omega_0 + * L_\beta \omega_0 = f \quad \text{in } \Omega$$

generalized convection diffusion for p form ω_p

$$d * d\omega_p + * \mathbf{L}_{\boldsymbol{\beta}} \omega_p = f_p$$

or

$$d * d\omega_p + *i_\beta d\omega_p = f_p$$
 or $d * d\omega_p + *di_\beta \omega_p = f_p$

example: magnetic convection

 $\operatorname{curlcurl} \mathbf{A} + \boldsymbol{\beta} \times \operatorname{curl} \mathbf{A} = \mathbf{F}$

Discrete Differential Forms

differential forms ω_p act on p dimensional manifolds $M_p! < \omega_p, M_p >:= \int_{M_p} \omega_p$

discrete setting:

prescribe ω_p on finitely many M_p^k (vertices $\mathbf{k} = i$, edges $\mathbf{k} = (e_1, e_2) \dots$).

 $\begin{array}{l} \text{interpolation of } M_{\rho} \rightarrow \underline{\text{approximation}} \\ < \omega_{\rho}, M_{\rho} > \cong \sum_{\mathbf{k}} a_{\mathbf{k}}(M_{\rho}) < \omega_{\rho}, M_{\rho}^{\mathbf{k}} > \end{array}$

limit procedure \rightarrow Whitney forms $\omega_p^{\mathbf{k}}$ $\omega_p(x) \cong \omega_p^{\mathbf{h}}(x) = \sum_{\mathbf{k}} \omega_p^{\mathbf{k}}(x) < \omega_p, M_p^{\mathbf{k}} >, \quad \omega_p^{\mathbf{k}}(x) := \lim_{M_p \rightarrow x} a_{\mathbf{k}}(M_p)$

• p = 0: ω_0^i Linear Finite Elements

• p = 1: $\omega_1^{\mathbf{e}}$ Edge Elements

 \implies back in FEM-setting, but conforming!

Lie derivative of discrete 0-forms

Discrete version of $\beta \cdot \mathbf{grad} \equiv i_{\beta}d \simeq \mathbf{C}\mathbf{G} =: \mathbf{L}$?

Lie derivative of discrete 0-forms

Discrete version of $\beta \cdot \mathbf{grad} \equiv i_{\beta}d \simeq \mathbf{C}\mathbf{G} =: \mathbf{L}$?

Lie derivative of discrete 0-forms

Discrete version of $\beta \cdot \mathbf{grad} \equiv i_{\beta}d \simeq \mathbf{C}\mathbf{G} =: \mathbf{L}$?

$$G_{ei} \stackrel{\omega_0^i = \lambda_i}{:=} < \operatorname{grad} \lambda_i, \mathbf{e} > \underline{\qquad}$$

$$Stokes \quad \delta_{ie_2} - \delta_{ie_1}$$

$$C_{ie} := < i_{\beta}\omega_1^{\mathbf{e}}, \mathbf{a}_i > \underline{\qquad}$$

$$= \lim_{t \to 0^-} \frac{<\omega_1^{\mathbf{e}}, \operatorname{Ext}_t(\mathbf{a}_i, \beta) >}{t}$$

$$\stackrel{upwind}{=} \beta(\mathbf{a}_i) \cdot \omega_1^{\mathbf{e}}(\mathbf{a}_i)|_{\mathcal{T}_i}$$

$$= -G_{ei}\beta(\mathbf{a}_i) \cdot \operatorname{grad} \lambda_{e/i}|_{\mathcal{T}_i}$$

$$L_{ji} := \sum_{\mathbf{e}} C_{je}G_{ei}$$

$$= \sum_{\mathbf{e}} -\beta(\mathbf{a}_j) \cdot \operatorname{grad} \lambda_{e/j}|_{\mathcal{T}_j}G_{ej}G_{ei}$$

$$= \beta(\mathbf{a}_j) \cdot \operatorname{grad} \lambda_i|_{\mathcal{T}_j}$$

$$grad_{\lambda_i}$$

L is M-matrix, inverse monoton!

oplied

FEM-Approach

bilinear form and upwind quadrature (Tabata)

$$b(u_{h},\lambda_{j}) := (\beta \cdot \operatorname{grad} u_{h},\lambda_{j})_{L^{2}} u_{h} \in P_{h}^{1}$$

$$= \sum_{T} \int_{T} \beta \cdot \operatorname{grad} u_{h} \lambda_{j}$$

$$\simeq \beta(\mathbf{a}_{j}) \cdot \operatorname{grad} u_{h}|_{T_{j}} \underbrace{\sum_{T \in supp(\lambda_{j}) \\ \text{discr. Hodge } P_{j}}}_{\text{discr. Hodge } P_{j}}$$

$$b_{h}(\lambda_{i},\lambda_{j}) = P_{j} \underbrace{\beta(\mathbf{a}_{j}) \cdot \operatorname{grad} \lambda_{i}|_{T_{j}}}_{L_{ji}}$$

error analysis using Strang-Lemma und Bramble-Hilbert techniques.

$$|b_h(u_h, v_h) - b(u_h, v_h)| \le C h |\beta|_{1,\infty} |u_h|_1 ||w_h||_0$$

• discrete Max. principle and L^{∞} -stability since M-matrix

Numerical Experiments

singular perturbed convection diffusion

$$-\varepsilon \Delta u + \beta \cdot \operatorname{grad} u = f \quad 0 < \varepsilon \ll 1$$

or

$$d *_{\varepsilon} d\omega_0 + *i_{\beta} d\omega_0 = f \quad 0 < \varepsilon \ll 1$$

- instability in standard FEM
- upwind finite differences
- artificial viscosity
- Streamline Upwind Petrov Galerkin (SUPG/SDFEM)

Numerical Experiments: Convergence and Stability

- ▶ $\beta_1 = 2, \beta_2 = 3$
- force data s.t.

convergence rate with $\varepsilon = 1$ (left) and $\varepsilon = 10^{-10}$ (right)

 $\beta_1 = \beta_2 = 1, f \equiv 0$ $u \equiv 1 \text{ on } \Gamma_1 \cup \Gamma_2$ $= 0 + \Gamma_1 \cup \Gamma_2$

Solution for $\varepsilon = 10^{-14}$ with upwind scheme and SUPG (mesh width=0.027).

$$b_{h}(u_{h}, v_{h}) = \sum_{T} |T| \sum_{\mathbf{a}_{i} \in Q(T)} \omega_{i}(\beta \cdot \mathbf{grad}u_{h})|_{T_{i}}(\mathbf{a}_{i})v_{h}(\mathbf{a}_{i})$$

$$= \sum_{\mathbf{a}_{i} \in \Sigma} v_{i}\omega_{i}(\beta \cdot \mathbf{grad}u_{h})|_{T_{i}}(\mathbf{a}_{i}) \sum_{T:\mathbf{a}_{i} \in T} |T| + \sum_{T} |T| \sum_{\mathbf{a}_{i} \notin \Sigma} \omega_{i}(\beta \cdot \mathbf{grad}u_{h})|_{T}(\mathbf{a}_{i})v_{h}(\mathbf{a}_{i})$$

$$:= \text{element boundary contribution}$$

$$:= \text{element center contribution}$$

Numerical Experiments: Convergence and Stability

- ▶ $\beta_1 = 2, \beta_2 = 3$
- ▶ force data s.t.

convergence rate with $\varepsilon = 1$ (left) and $\varepsilon = 10^{-10}$ (right).

•
$$\beta_1 = \cos(\vartheta), \ \beta_2 = \sin(\vartheta), \ f \equiv 0$$

• $u \equiv 1$ on Γ_1 , $u \equiv 0$ on Γ_2

▶
$$\varepsilon = 10^{-14}$$
, $h = 0.042$

•
$$\beta_1 = \cos(\vartheta), \ \beta_2 = \sin(\vartheta), \ f \equiv 0$$

•
$$u \equiv 1$$
 on Γ_1 , $u \equiv 0$ on Γ_2

▶
$$\varepsilon = 10^{-14}$$
, $h = 0.042$

▶
$$\varepsilon = 10^{-14}$$
, $h = 0.042$

•
$$\varepsilon = 10^{-14}$$
, $h = 0.042$

•
$$\beta_1 = \cos(\vartheta), \ \beta_2 = \sin(\vartheta), \ f \equiv 0$$

• $u \equiv 1 \text{ on } \Gamma_1, \ u \equiv 0 \text{ on } \Gamma_2$

•
$$\varepsilon = 10^{-14}$$
, $h = 0.042$

•
$$\beta_1 = \cos(\vartheta), \ \beta_2 = \sin(\vartheta), \ f \equiv 0$$

• $u \equiv 1 \text{ on } \Gamma_1, \ u \equiv 0 \text{ on } \Gamma_2$

•
$$\varepsilon = 10^{-14}$$
, $h = 0.042$

Conclusions and Further Issues

- Lie derivative formalism reproduces upwind FEM!
- Can be extended to higher order!
- Choice of basis and quadrature?
- Proof of stability for 2nd+ order?
- Lie Derivative formalism brings Upwinding to discretization!

 $\boldsymbol{eta} imes \mathbf{curlA} \simeq i_{\boldsymbol{eta}} d\omega_1$

- ▶ Stability of discretizations for 1+ forms, e.g. magnetic convection?
- Boundary and gauge conditions for 1+ forms?

