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Abstract

This study presents an extension of the Kalman filter techniques used in state
space time series filtering and proposes adaptive filters, based on the minimi-
sation of the Kullback-Leibler divergence criterion, measuring the difference
between two distributions of random variables. The paper discusses algorithms
working under conditions of deficient information concerning the knowledge of
the distribution of the error terms of the system described in state space form.

1. Introduction

Linear filtering of state space time series comprises a framework of basic, funda-
mental and popular methods of system analysis. The largely known approach
of R. E. Kalman is based on a modelisation of signals or data by stochastic
differential or difference equations. The present theory aims to obtain optimal
or approximately optimal filters, using all available a priori information1 on
the observations and their stochastic characteristics and also on the analysed

1An a priori information concerns the knowledge of the probability density function of
the distribution of the noise or error term of a model. A priori information on a set of
parameters of the identified system provides the initial values of the estimating algorithms.
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system [2], [3], [7], [21]. But usually a priori information is deficient or incor-
rect.

Modern adaptive filter methods, able to learn from the data, open new
possibilities in filtering theory. The main example treated in this paper is a
linear Gaussian state space model, see Shilman [21]. In the present paper an
adaptive filter algorithm for a non trivial filter is proposed to solve a state space
time series problem that needs as a priori information the theoretical variance
of the theoretical state and the running empirical variances, computed on the
basis of the history of the observations.

2. State-space representation of a dynamic system

Let yt denote an (n × 1) vector of variables y1t, y2t, . . . , ynt observed at dis-
crete dates t=1, 2, . . .T and a (r × 1) vector xt of generally unobserved vari-
ables x1t, x2t, . . . , xnt, known as state vector. Then, a simplified version of a
time-homogenous state-space representation of the dynamics of the vector yt is
defined by a first order Markov process, described by a so-called state equation

xt = Axt−1 + vt (1)

and secondly by an observation equation

yt = Hxt + wt, (2)

where A and H are (r × r), respectively (n × r) matrices of parameters, see
Harvey ([6], p.101). The (n × 1) disturbance vector vt and the (r × 1) wt

disturbance vector are themselves serially uncorrelated white noise vectors with
E(wt) = E(vt) = 0 and V ar(wt) = Qt, V ar(vt) = Rt. Furthermore, the
disturbance vectors vt and wt are mutually uncorrelated: E(vtw

′
τ ) = 0 for all

t and τ , see Kalman, ([8], p. 100). It is assumed that the initial state vector
x1 is uncorrelated with any realisations of vt or wt. This implies that vt is
uncorrelated with lagged values of x or y: E(vtx

′
τ ) = E(vty

′
τ ) = E(wty

′
τ ) = 0,

τ = t−1, t−2, ..., 1 and similarly E(wtx
′
τ ) = 0, τ = 1, ..., T , see Hamilton ([5],

p. 372). Note that a state space representation of a dynamic system is not
unique. The concept of state-space representation is now illustrated by some
examples.

1. Example: The one dimensional local level model, see Harvey ([6], p. 102)
and Durbin-Koopman ([12], p. 9). The settings are: r = n = 1, with xt = [xt],
yt = [yt], A = [1], wt = [νt], then the observation equation is

yt = xt + νt ; V ar(νt) = σ2
ν (3)

and with vt = [ηt], H = [1], the state equation

xt = xt−1 + ηt ; V ar(ηt) = σ2
η (4)
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that is a time-homogenous state space model with the state xt and with sta-
tionary first differences ∆yt of the observations.

2. Example: The univariate ARMA(p, q) process, n = 1, see Hamilton ([5],
p. 375), using the backward shift operator B, Byt = yt−1. The autoregression
polynomial Φ of order p with coefficients φ1 . . . φp,

Φ(B) = 1− φ1B − φ2B
2 − . . .− φpB

p, (5)

and the moving average polynomial Θ of order q with coefficients θ0, . . . , θq

Θ(B) = 1 + θ1B + θ2B
2 + . . . + θqB

q. (6)

are defined. An univariate ARMA(p, q) process

Φ(B)yt = Θ(B)εt (7)

has more generally a state-space representation form by defining the number
of rows and columns r = max{p, q + 1} of matrix A, where one defines φj = 0
for j = p+1, . . . r and θi = 0 for i = q +1, . . . r. In this case the state vector is
xt = [xt, xt−1, . . . xt−r+1]

′. Then the (r × 1) error-vector εt = [εt, 0, . . . , 0]′, the
(r × r) transition matrix A

A =




φ1 φ2 φ3 . . . φr−1 φr

1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . .
0 0 0 . . . 1 0




(8)

and the (n × r) −matrix H = Θ = [1, θ1, θ2, . . . , θr−1] are defined. A state-
space representation is defined with the state equation (1)

xt = Axt−1 + εt, (9)

and, for a single observation, n = 1, the observation equation (2) of the single
component vector yt = [yt] becomes, written without error term,

yt = Θxt = (1 + θ1B + θ2B
2 + . . . + θr−1B

r−1)xt. (10)

The first row of equation (8) yields

xt − φ1xt−1 − . . .− φrxt−r = (1− φ1B − . . .− φrB
r)xt = εt. (11)

Then, equation (10) is multiplied by the polynomial Φ, equation (5), resulting
in the univariate ARMA(p, q) model of the form (7)2

(1− φ1B − . . .− φrB
r)yt = (1 + θ1B + . . . + θr−1B

r−1)εt. (12)

2The necessary requirement for stationarity of the model (7) is that the polynomial Φ in
(5) of degree p must have all its roots outside the unit circle within the Gaussian plane.
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Once a model is put in a state space form, a number of important algo-
rithms are applied. At the center is the Kalman filter algorithm that is a
recursive procedure for computing the optimal estimator of the state vector at
time t, based on the information available at time t. This information consists
of the observations up to and including yt. All the system matrices together
with the initial expectation vector E(x0) and covariance matrix of the esti-
mation error P0 = V ar(x0) are assumed to be known in all time periods, see
Harvey ([6], p. 101).

3. The Kalman filter

The derivation of the Kalman filter rests on the assumption that the distur-
bances and initial state vector x0 are normally distributed. It enables the
likelihood function to be calculated via what is known as the prediction error
decomposition3.

Kalman used the covariance functions. But it is also possible to describe
the dynamics of the series yt, xt by linear stochastic equations. Rewriting
a ”process in such a form has the aim to obtain a convenient summary of
the system’s dynamics, and this is the reason to be interested in state-space
representation of any system”, see Hamilton ([5], p. 374).

Consider the state equation (1) and the observation equation (2). Consider
the linear orthogonal projection of the state vector xt on the subspace Yt−1 =
{yt−1,yt−2, ...,y1}, generated by the observations previous to yt, denoted by
x̂t|t−1 := Ê(xt|Yt−1)

4, see Hamilton ([5], p. 377). The state estimator x̂t|t−1

is ”defined as the best (minimum variance, unbiased) estimate of the state xt,
given the set of observations Yt−1”, see Ohap and Stubberud ([13], p. 589).
Analogously, the estimate x̂t := Ê(xt|Yt) is the best estimate of xt given Yt.
Let Pt−1 denote the (r × r) estimation error covariance matrix of xt,

Pt−1 = E[(xt−1 − x̂t−1)(xt−1 − x̂t−1)
′] = V ar(xt−1). (13)

Given the optimal estimators x̂t−1 and Pt−1, their estimates are

x̂t|t−1 = Ax̂t−1, (14)

3A standard result on the multivariate normal distribution is then used to calculate
recursively the distribution of xt, conditional on the information set at time t, for all t =
1, . . . , T . These conditional distributions are themselves normal and hence are completely
specified by their means and covariance matrices. The Kalman filter algorithm computes
these quantities. It is known that the mean of the conditional distribution of the state vector
xt is an optimal estimator of xt in the sense that is minimises the mean square errors (MSE),
see Harvey ([6], p. 105).

4Suppose we were to find a matrix α such that the forecast error (xt −αYt−1) is uncor-
related with Yt−1, E[(xt − αYt−1)Yt−1] = 0. For this case, the linear projection notation
P̂ (xt|Y) = αYt−1 is used. The operator Ê defines the linear projection P̂ of xt on the set
Yt−1, along with a constant term, Ê(xt|Yt−1) = P̂ (xt|1,Yt−1), see Hamilton ([5], p. 74).
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while the associated approximate covariance matrix is

Pt|t−1 = E[(xt − x̂t|t−1)(xt − x̂t|t−1)
′] = APt−1A

′ + Rt. (15)

The equations (14), (15) are called prediction equations. When the new obser-
vation yt is available, the estimator x̂t of the state vector xt is computed on
the basis of the estimator x̂t|t−1 with the subsequent updating equations

zt = yt −Hx̂t|t−1

x̂t = x̂t|t−1 + Pt|t−1H
′F−1zt,

(16)

where zt is a white noise process, see Ohap ([13], p. 589), called innovations
and represent the one-step forecast error of yt, see Durbin and Koopman ([12],
p. 66). The computation of the estimate x̂t (16) is based on a lemma in mul-
tivariate regression theory, see Anderson ([1], Theorem 2.5.1). The covariance
matrix of the innovations

Ft = V ar(zt) = HPt|t−1H
′ + Qt (17)

and the estimation error covariance matrix Pt are presented5,

Pt = Pt|t−1 −Pt|t−1H
′F−1

t HPt|t−1. (18)

Taken together (16) and (18) make up the Kalman filter. The recursions can
be computed directly from x̂t|t−1 to x̂t+1|t with (14) and (16):

x̂t+1|t = (A−KtH)x̂t|t−1 + Ktyt = Ax̂t|t−1 + Ktzt, (19)

where the gain matrix Kt is given by

Kt = APt|t−1H
′F−1

t ; t = 1, . . . T, (20)

and the recursion for the error covariance matrix is known as the Riccati equa-
tion, resulting from (15) and (18)

Pt+1|t = A(Pt|t−1 −Pt|t−1H
′F−1

t HPt|t−1)A
′ + Rt. (21)

The procedure of filtering has the aim to obtain an estimated signal x̂t at
each moment t, corresponding to each element of the set of observations
(yt−1,yt−2, . . .).

3. Example: Consider again the local level model with observations (3) and
scalar states (4). Then the estimation of the scalar state xt is given by the
”best (minimum variance, unbiased) estimate” x̂t|t−1 of the state xt and the

5In this paper it is assumed that the inverse of Ft exists.
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associated approximate variance Pt|t−1 := E[(xt− x̂t|t−1)
2]. The innovations zt

and the variance of innovations ft are computed from equations (16) and (17).

zt = yt − x̂t|t−1

ft = Pt|t−1 + σ2
ν

(22)

Then, the Kalman filter kt and the recursion for the best estimate x̂t+1|t can
be computed from equations (20), (19), getting

kt = Pt|t−1f
−1
t

x̂t+1|t = x̂t|t−1 + ktzt.
(23)

Finally, one computes the Riccati equation (21)

Pt+1|t = Pt|t−1(1− Pt|t−1f
−1
t ) + σ2

η. (24)

Subsequently, a computer simulation of N = 2000 values of each series xt and
yt is realised, where the variances σ2

η = 16 and σ2
ν = 4 have been set6. It is

known that ”non-trivial local level models have a steady state solution” ([12],
p. 33). The variance of this steady state solution is computed by setting P =
Pt+1|t = Pt|t−1 into equation (24)7. Then, empirical variances are computed
from the simulated series to get estimations of V ar(ηt) = V ar(xt − xt−1) and
V ar(νt) at each time t and the innovation variance (22), the Kalman filter (23)
and the associated approximate variance (24) are computed from the simulated
series, confirming the theoretical results, see Fig. 1.

4. Minimisation of the Kullback-Leibler information divergence as
criterion of estimation

The realisation of the Kalman filter under complete information implies that
the signal values x̂t are calculated at each moment t. In real applications, there
are different deviations from the above described text book descriptions.

Adaptive filtering. The Kalman filter is just one of many adaptive filter-
ing or estimation algorithms. There are many alternative of the Kalman filter.
In the present case it is assumed that the covariance functions are partly or
completely unknown.

Deficient a priori information. When the description of the signals by
the system equations (1), (2), the matrices A,H,Qt,Rt or the initial condi-
tions E(x0), V ar(x0) considered to be partially or completely unknown, one is

6The computer simulation has been realised with a computer program written by the
authors in RATS, Regression Analysis of Time Series, T. A. Doan, Estima, Evanston IL
60201 USA.

7Through simple algebra the steady state associated approximate variance P = 19.314
of the estimated state and consequently also the steady state Kalman filter k = 0.8284 and
the steady state innovation variance f = 23.314 are obtained.
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Kalman filter simulation of the local level model
(a) Simulated random walk state x(t), start x(1)=0, eq. (4)

250 500 750 1000 1250 1500 1750 2000
-80

-40

0

40

80

120

160

(b) Simulated observations y(t), eq. (3)
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(c) The Kalman filter k(t), eq. (23)
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(d) The estimated variance of the state x(t), eq. (24)
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(e) The innovations z(t), eq. (22)
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(f) The innovation variance f(t), eq. (22)
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Figure 1: Simulation of the local level model, computing the running empirical
variances of the state (3) and the observations (4)

in presence of the particular situation of deficient a priori information. In this
case, only the observations yt and realisations connected with the state vector
xt are available. These empirical data can be utilised in two directions. With
indirect methods the data are used to restore the description of observations
and the optimal filter is synthesised by standard methods. With direct meth-
ods, the filters are formed on the basis of observations without restoration of
the description. This approach is easier from the computational point of view.
Moreover, it often offers the possibility to solve problems in real time regime,
see Shilman [21].

As it is known, see Harvey ([6], p. 105), under the conditions of deficient
a priori information on noises and signals, it is not possible to obtain op-
timal estimations of the state vector of the system (1), (2). The available
filtering algorithms are suboptimal from the computational point of view and
do not quickly converge. Moreover, when the covariance matrices of noise are
unknown, the analytical solution of the problem is at present not known.

For the present development of adaptive filters, it is assumed that the
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covariance matrices Qt, Rt of the noise vt, wt of the state and observation
equations (1), (2) are unknown.

Kullback-Leibler divergence information. It is assumed that the true
probability density of the random vector yt, t = 1, ..., T , here written without
time index, y, is g(y) and the sample probability density of y is f(y). The
idea is to introduce the Kullback-Leibler divergence criterion, defined for the
probability densities g and f as, see Kullback-Leibler ([11], p. 6),

Jg,f (y) = J(g, f) =

∫
[g(y)− f(y)] ln

g(y)

f(y)
dy. (25)

In other words, the information divergence (25) reflects the difference between
the unknown true density of the random variable y and its estimation. The
Kullback-Leibler information divergence has following properties: (i) J(g, f) >
0 if g(y) 6= f(y), (ii) J(g, f) = 0 if g(y) = f(y), (iii) J(g, f) = J(f, g). Then,
it is additive for independent observations y1, . . . ,ym,

(iv) Jg,f (y1, . . . ,ym) =
n∑

k=1

Jg,f (yk). (26)

Furthermore, an additional measurement never reduces the Kullback−Leibler
information divergence8

(v) Jg;f (y1, . . . ,ym) ≤ Jg;f (y1, . . . ,ym,ym+1). (27)

For the parametric case, there is a vector θ = (θ1, θ2, . . . , θk) of parameters,
specifying a hypothetical distribution h. One sets g(y) = h(y,θ) and f(y) =
h(y,θ + ∆θ) for neighbouring points θ and θ + ∆θ in a parameter space.
The information divergence is represented in this case by the elements gαβ =∫

f(y, θ) 1
f(y,θ)

∂f(y,θ)
∂θα

1
f(y,θ)

∂f(y,θ)
∂θβ

dy of Fisher’s information matrix G = {gαβ},
see Kullback and Leibler ([11], p. 28), [9],

J(θ, θ + ∆θ) ≈
k∑

α=1

k∑

β=1

gαβ∆θα∆θβ. (28)

Estimation. For the construction of the estimation algorithm, the Kullback-
Leibler information divergence J(g, f) (25) is considered as a matrix functional
of matrices Kt ∈Mn×m. The necessary conditions to determine the argument
that provide the minimum to the matrix functional, written in form of matrix
differentiation [7], [17] with respect to the gain matrix Kt are calculated,

∂J(g, f)

∂K
= 0. (29)

8The mentioned properties of the Kullback-Leibler information divergence explain its
application to discover, recognise and construct signals.
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The second order necessary conditions for existence of minima have also to be
verified, but are not explicitly mentioned here. The adaptive filter Kt is the
solution of an equation

Kt = arg min
Mn×m

{J(g, f)}, (30)

see Pervukhina [15], [17], [20].
Estimations are stochastic values. For this reason, one considers an esti-

mation as optimal, when the distribution parameters are closest to the distri-
bution parameters of the true state vector. A measure of the mean degree of
correspondence of the probability distribution to the true distribution will be
the criterion of quality for every step of estimation.

Then, the estimation, optimal from the point of view of the Kullback-
Leibler information criterion, based on the observations till time t will give the
expression [17]

x̂t = ξ(Kt, x̂t|t−1,yt). (31)

Here ξ is an estimating function, applying the space Rn×Rm into Rn, whereas
Kt are n×m matrices of gain coefficients of the space Mn×n that are the
solution of the equation (30).

5. Adaptive filtering for multivariate Gaussian populations

Here a direct analysis is made by the method of adaptive filtering over current
observations yt. Generally no other empirical data are used.

The case is considered, where the (r×1) state vector xt has a r-dimensional
normal distribution with E(xt) = q and a (r × r) covariance matrix Σt =
E[(xt − q)(xt − q)′]. The estimations x̂t are found in a class of unbiased esti-
mations which are calculated by equation (31). Furthermore, the estimations
of the state vector x̂t are linear combinations of observations under the normal-
ity assumption. Thereby, x̂t are also normally distributed with mathematical
expectation E(x̂t) = q̂ and covariance matrix Σ̂ = E[(x̂t − q̂)(x̂t − q̂)′]. The
estimation requires to calculate a matrix Kt that is provided by the minimum
of the Kullback-Leibler divergence information criterion.

When the vectors xt and x̂t are normally distributed, its probability den-
sities are

g(x) =
1

|2πΣ|1/2
exp(−1

2
(x− q)′Σ−1(x− q)), (32)

and

f(x) =
1

|2πΣ̂|1/2
exp(−1

2
(x̂− q̂)′Σ̂

−1
(x̂− q̂)). (33)

With (32), (33) the function ln g(x)
f(x)

in (25) is computed, see Hawks [9]. Using

the trace operator tr for square matrices, the integral (25) is computed and
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gives

J(g, f) =
1

2
tr[(Σ− Σ̂)(Σ̂

−1−Σ−1)] +
1

2
tr[(Σ−1 + Σ̂

−1
)(q− q̂)(q− q̂)′]. (34)

Under the assumption of equal population means, q=q̂, equation (34) is writ-
ten, where n is the dimension of xt,

J(g, f) =
1

2
tr[(Σ− Σ̂)(Σ̂

−1 −Σ−1)] =
1

2
tr[ΣΣ̂

−1
+ Σ−1Σ̂]− n. (35)

On the other hand, under the assumption of equal population covariances,
Σ = Σ̂, equation (34) is written,

J(g, f) = tr[Σ−1(q− q̂)(q− q̂)′] = (q− q̂)′Σ−1(q− q̂), (36)

giving the generalised distance of Mahalanobis, see Kullback-Leibler ([11], p.
190).

6. A Kullback-Leibler adaptive filter algorithm

The proposed algorithm (37)-(39) computes an adaptive filter as an alternative
to the well known Kalman filter algorithm (14) - (21). The following version
of this alternative so called Kullback-Leibler adaptive filter algorithm has been
described, see Pervukhina [15]-[19] and is a result of the solution of the opti-
misation problem (29). As it will be seen in this paper there is a system when
the subsequent algorithm does not result in all the cases in non trivial filters9.

First, the estimate x̂t|t−1 (14) and the innovations zt (16) are identical

x̂t|t−1 = Ax̂t−1

zt = yt −Hx̂t|t−1.
(37)

Second, the covariance matrix of the observations Tt, the covariance matrix
Σt of the state vector xt and the covariance matrix Σ̂t−1 of its estimations
x̂t−1 are defined to compute the proposed adaptive filter,

Kt = AΣ̂t−1A
′H′[HAΣ̂t−1A

′H′ + Tt]
−1, (38)

as an alternative of the Kalman filter (20). Then the covariance matrix of the
estimations x̂t−1 of the state is updated through equation

Σ̂t = [I−KtH]AΣ̂t−1A
′[I−KtH]′ + KtTtK

′
t. (39)

Finally, a recursion equation, analogue to (19), is set up to compute the esti-
mated state vectors

x̂t+1|t = Ax̂t|t−1 + Ktzt. (40)

The main advantage of this algorithm resides in the possibility to estimate
the system state vector in real time regime, when the covariance matrices Qt

and Rt are unknown, see the remark above.

9A trivial filter is a filter that is a null-matrix, Kt = 0, for all t.
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7. An example of a Linear Gaussian State Space Model

The Kalman filter algorithm (14) - (21) and the Kullback-Leibler adaptive
filter algorithm (37)-(40) are applied to a one-dimensional linear Gaussian
state space model (1), (2) that has been treated by Shilman [21].

4. Example: The settings of the presented linear Gaussian state space
model are; n = r = 1, xt = [xt], yt = [yt], H = [1], wt = [wt] A = [a] and
vt = [bvt]. The observations are described by

yt = xt + wt ; wt ∼ WN(0, σ2
w), (41)

where wt is a Gaussian white noise with σw = 1. The scalar state, defined as
a stationary AR(1) process xt is

xt = axt−1 + bvt ; vt ∼ WN(0, σ2
v), (42)

where vt is independent from wt, E[vtwt] = 0, with σv = 1, parameters a = e−1,
b =

√
15(1− e−2) and the covariance function γm = 15e−|m|. As (42) is

stationary, its variance is time independent, calculated as σ2 = V ar(xt) =
b2

1−a2 = 15. This implies T = V ar(yt) = 16 for the variance of the observations.
a) The Kalman filter. The Kalman filter algorithm (13)-(21) is applied to

model (41), (42). The innovation zt, the innovation variance ft, the Kalman
filter kt, the estimated state x̂t+1|t and the associated approximate variance
Pt+1|t are set up,

zt = yt − x̂t|t−1

ft = Pt|t−1 + σ2
w

kt = aPt|t−1f
−1
t

x̂t+1|t = ax̂t|t−1 + ktzt

Pt+1|t = a2Pt|t−1(1− Pt|t−1f
−1
t ) + b2σ2

v .

(43)

Then, the steady state solutions ([12], p. 33) are investigated, setting for the
Kalman filter k = kt, for the innovation variance f = ft, for the associated
approximate variance P = Pt+1|t = Pt|t−1 and solving the system (43)10.

b) Simulation of the Kalman filter. A computer simulation of N =
2000 values of the AR(1) model xt (42) and the series yt (41) is realised with a
RATS-program. The theoretical variances σ2

v = 1 and σ2
w = 1 are replaced by

estimations from the simulated series11. The theoretical results under a) are
confirmed by this simulation, see Fig. 2.

10Through simple algebra the steady state associated approximate variance P = 13.0957
of the estimated state, the steady state Kalman filter k = 0.34178 and the steady state
innovation variance f = 14.0957 are obtained.

11Then empirical variances are computed at each time t; t = 2, ..., N for both simulated
series {wτ} and {xτ−axτ−1}, τ = 1, ..., t. These estimations replace the theoretical variances
in equations of system (43) for the simulation.
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Kalman filter simulation of model (41), (42)
(a) Simulated state x(t) with start value x(1)=0, eq. (42)
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(b) Simulated observations y(t), eq. (41)
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(c) Kalman filter, eq. (43)
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(d) Estimated variance of the state, eq. (43)
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(e) Innovations, eq. (43)
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(f) Innovation variance, eq. (43)
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Figure 2: Computation of the Kalman filter following Harvey [6], Ohap and
Stubberud [13] and Durbin and Koopman [12], see equation (43)

c) The Kullback-Leibler adaptive filter. The innovation zt = yt − x̂t

is defined. Then, the optimal estimator x̂t+1 is set up in application of the
updating equation (40),

x̂t+1 = ax̂t + ktzt = ax̂t + kt[yt − x̂t] = a(1− kt)x̂t + ktyt. (44)

As the innovations represent a white noise process, one is in presence of a
stationary AR(1)-process (44), as is the process (42). Then, the expectations
µ = E[x̂t+1] = E[xt] = 0 vanish and therefore the estimated variance becomes
σ̂2

t+1 = E[x̂2
t+1]. It is developed as follows

σ̂2
t+1 = E[(a(1− kt)x̂t + ktyt)

2]

= a2(1− kt)
2σ̂2

t + k2
t E[y2

t ] + 2a(1− kt)ktE[x̂tyt].
(45)

The last term in (45) becomes with the conditions mentioned on page 3,
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E[x̂twt] = E[x̂tvt] = E[xt−1wt−1] = 0.

E[x̂tyt] = E[x̂t(xt + wt)] = E[x̂txt] + E[x̂twt]︸ ︷︷ ︸
=0

= E[x̂t(axt−1 + bvt)] = aE[x̂txt−1] + b E[x̂tvt]︸ ︷︷ ︸
=0

= aE[(a(1− kt−1)x̂t−1 + kt−1yt−1)xt−1]

= a2 E(x̂t−1xt−1]︸ ︷︷ ︸
=0

(1− kt−1) + akt−1E[yt−1xt−1]

= akt−1E[(xt−1 + wt−1)xt−1] = akt−1E[x2
t−1] = akt−1σ

2
t−1.

(46)

The result of (46) is now introduced in equation (45) with Tt = E[y2
t ], giving

σ̂2
t+1 = a2(1− kt)

2σ̂2
t + Ttk

2
t + 2σ2

t−1a
2(1− kt)ktkt−1. (47)

It is known that the norm of the third term in (47) is small and can be skipped,
see Pervukhina [15]-[19], also in the multi-dimensional case. This leads to a
second degree equation for the adaptive filter kt

12,

σ̂2
t+1 = a2(1− kt)

2σ̂2
t + Ttk

2
t . (48)

d) Steady state solutions. The steady state variance, σ̂2 = σ̂2
t = σ̂2

t+1,
the steady state adaptive filter k = kt = kt−1 and the steady state observation
variance T = Tt are introduced in (47) and (48). In this case, by skipping
the third term of equation (47) that has nearly no influence on the searched
filter of this steady state investigation, a second degree function g and a third
degree function f

f(k) = a2(1− k)2σ̂2 + Tk2 + 2σ2a2(1− k)k2 − σ̂2

g(k) = a2(1− k)2σ̂2 + Tk2 − σ̂2.
(49)

are deduced. Both functions f and g are presented in Fig 3. The zeros
of function f are {−0646904, 0.963736, 5.12400}, the zeros of function g are
{−0.742996, 0.968179}. Clearly, there is a zero nearly around {0.965} com-
mon to f and g. This common zero is advocated as the value of the steady
state adaptive filter of (48) and (47). In the subsequent development only the
second degree equation (48) is considered, much simpler to treat.

e) Minimisation of the Kullback-Leibler information divergence.
The Kullback-Leibler criterion is formulated for this linear Gaussian state
space model. The condition is that there is a theoretical state xt and an

12All the subsequent calculations have also been realised by the authors with the corre-
sponding third degree equation (47).
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Figure 3: Functions g and f of the adaptive filter k

expected state x̂t with identical expectations µ = E[xt] = E[x̂t] = 0 and vari-
ance σ2 of xt, respectively, variance σ̂2 of the expected state x̂t being generally
different, σ̂2 6= σ2. Both single-variate distributions are supposed to be nor-
mal. For the purpose of this analysis it is supposed that σ is known and σ̂ is
estimated from the data. The divergence criterion (35) becomes in this case

J(σ2, σ̂2) =
1

2
(
σ2

σ̂2
+

σ̂2

σ2
)− 1 =

(σ2 − σ̂2)2

2σ2σ̂2
(50)

and measures the divergence between both normal distributions. Clearly, for
σ = σ̂ this divergence information criterion becomes zero, J(σ2, σ2) = 0.
The estimation criterion (29) is applied to minimise the present divergence
information criterion J(σ2, σ̂2) with respect to the steady state adaptive filter
k, the derivation being set to zero,

∂J(σ2, σ̂2)

∂k
=

∂J(σ2, σ̂2)

∂σ̂2
· ∂σ̂2

∂k
=

1

2
(
−σ2

σ̂4
2

+
1

σ2
)
∂σ̂2

∂k
= 0. (51)

Consequently, one of both factors in (51) is zero. This means either, (α)
∂σ̂2

∂k
= 0, the derivation of σ̂2 is zero, or, (β) (−σ2

σ̂4
2

+ 1
σ2 ) = 0, the parenthesis is

zero, leading to the equality σ̂ = σ.
(α) The operational criterion is ∂σ̂2

∂k
= 0 together with the equation (48)

for the variance σ̂2 gives the algorithm for the steady state

σ̂2 = a2(1− k)2σ̂2 + Tk2

k =
a2σ̂2

a2σ̂2 + T
.

(52)

This is an interesting system, because the variance σ2 of the state xt has
disappeared and the system (52) only depends on the steady state variance
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T of the observations yt. Unfortunately, this one-dimensional case only has
as solutions either the trivial filter k = 0 or the negative filter k = a2−1

a2 < 0

coupled with a meaningless negative estimated variance σ̂2 = T a2−1
a2 < 0 of the

estimated state x̂t.
(β) The operational criterion is the equality σ̂ = σ, meaning that the

variance of the estimated state x̂t is optimal when it is forced to be the variance
of the theoretical state xt.

f) The Kullback-Leibler adaptive filter algorithm is now calculated
for the model (41), (42), initially for time dependent parameters. The quadratic
equation (48) is expanded into powers of kt, giving the quadratic equation

0 = (a2σ̂2
t + Tt)k

2
t − 2a2σ̂2

t kt + σ̂2
t a

2 − σ̂2
t+1. (53)

Its single positive solution, approximately a solution of (47), is chosen as the
subsequently aimed adaptive filter kt. The Kullback-Leibler adaptive filter al-
gorithm is set up, based on the coefficient a, the values Tt, yt, x̂t, comprising the
three coefficients of equation (53) in the variable kt, the adaptive filter kt, the
innovation zt and the estimated state x̂t+1. The single remaining operational
criterion (β) is applied, σ = σ̂ = σ̂t = σ̂t+1 = 15. At the start, the initial value
x̂1 of the state must be chosen, here x̂1 = 0, the computation is performed in
a loop for t = 2, ..., N and all the observations yt must be available at each
step. The algorithm comprises the equations

at = a2σ2 + Tt; b = −2a2σ2; c = σ2(a2 − 1); zt = yt − x̂t; x̂t =
1

t

t∑
τ=1

x̂τ

kt =
−b +

√
b2 − 4atc

2at

; x̂t+1 = ax̂t + ktzt; s2
x̂t

=
1

t− 1

t∑
τ=1

(x̂τ − x̂t)
2.

(54)

It is easily seen that neither estimations of the variances σ2
w nor σ2

w are neces-
sary for the computation of the algorithm (54). Moreover the variances Tt for
yt have to be computed at each step t, similarly to those of x̂t.

g) The steady state solution. The steady state adaptive filter k = kt, see
Durbin and Koopman ([12], p. 33) is now investigated. The additional setting
is: T = Tt = 16. Then the steady state corresponding to the coefficients at, b
and c of the system (54) are computed and the steady state solution k = 0.968
for the adaptive filter is found.

h) Simulation of the Kullback-Leibler adaptive filter. A computer
simulation of the adaptive filter algorithm (54) is realised with a RATS pro-
gram13. The theoretical results under g) are confirmed by this simulation, see

13First, N = 2000 observations yt; t = 1, ..., N are simulated. Second, the algorithm (54)
is applied. The variances Tt of the simulated observations yt are computed at each time t
on the basis of the history of the values yτ ; τ = 1, ..., t, t = 2, ..., N .
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Fig. 4. The six slides (a)-(f) are self explaining and following convergences are
observed, Tt → 16, s2

x̂t
→ 15, kt → 0.968.

Adaptive filter simulation of model (41), (42)
(a) Simulated observations (41)
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(b) Running empirical variance of the observations
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(c) Adaptive filter 54)
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(d) Estimated state (54)
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(e) Running empirical variance of the estimated state (54)
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(f) Innovations (54)
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Figure 4: Simulation of the Kullback-Leibler adaptive filter (54)

8. Conclusion

The Kalman filter algorithm has been applied to a one-dimensional non sta-
tionary local level model and to a one-dimensional stationary linear Gaussian
model. In the sense of an extension, an alternative principle, the minimi-
sation of the Kullback-Leibler information criterion is proposed, in order to
obtain algorithms to compute so called Kullback-Leibler adaptive filters. This
procedure leads to different operational criterions, depending on the chosen
problem and the corresponding Kullback-Leibler criterion. In this paper, es-
sentially, a one-dimensional stationary linear Gaussian model has been treated.
The derivation of the Kullback-Leibler information criterion gives two oper-
ational criterions: (a) Either, the requirement is that the estimated variance
of the estimated state is minimal with respect to the searched filter, and this
leads in this one-dimensional case to an algorithm that only has the trivial
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adaptive filter, k = 0. Non-trivial filters are described for this criterion in
higher-dimensional systems, see Pervukhina [15]- [20], not treated in this pa-
per. (b) Or, the requirement is that the estimated variance of the estimated
state is equal to the a priori known variance of the theoretical state. This
second case, where a steady state adaptive filter k = 0.968 is identified, is of
special interest, because it is a case of realisation of an adaptive filter, working
under condition of deficient a priori information. The variances of the state
noise and of the observation noise need not to be known or computed, contrary
to the case of the Kalman filter.

The present results are illustrated by simulations of the Kalman filter and
the Kullback-Leibler adaptive filter, applied to the discussed simulated non-
stationary local level series and to the simulated stationary linear Gaussian
time series.
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