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The solvency problem

• Liability holders of a financial institution are concerned that the
institution may become insolvent, i.e.

• may fail to honor its future obligations.

• This is the case if the institution’s financial position will be negative
in some future state of the economy.

• By financial position we mean

financial position = assets− liabilities.

• How to operate in order to reduce the likelihood of insolvency?
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A journey through citations (1)

• ”when you cannot express it in numbers, your knowledge is of meagre
and unsatisfactory kind”
Lord Kelvin 1883

• ”...and if you can’t measure it, measure it anyway”
F. Knight upon reading the above quote of Lord Kelvin

• ”if you can’t measure it you can’t manage it”
Anonymous
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The underlying mathematical description

• We consider a one-period economy with dates t = 0 and t = T .

• Let Ω be a (finite) state space equipped with a probability P:

• Ω represents the set of all future scenarios of the economy;

• Ω is determined according to a scenario generation algorithm;

• P is a probability measure assigning to every subset A ⊆ Ω its
probability of occurrence P(A) ∈ [0, 1];

• P is a frequency measure determined according to micro- and

macro-economic analysis.

• We model assets and liabilities at time t = T as random variables

A : Ω→ R and L : Ω→ R .

• The net financial position is also a random variable

X := A− L .
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Financial positions

• Let X := A− L be the financial position of a company. Then

X : Ω→ R

is a random variable.

• The value X (ω) ∈ R represents the capital position at time t = T in
case the scenario ω will occur.

• Three cases:

X (ω) = A(ω)− L(ω)


> 0 (gain)

= 0 (neither gain nor loss)

< 0 (loss)

• If X (ω) ≥ 0 for every ω ∈ Ω, the company is always solvent...

• but typically P(X < 0) > 0.
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The role of regulators

• To (among other issues) protect liability holders, financial institutions
are subject to several regulatory regimes...

• and are required to hold risk capital as a buffer reserve against
unexpected losses.

• Some regulatory frameworks:

• Basel (now Basel III): banking system;

• Solvency II: insurance companies within EU;

• Swiss Solvency Test: insurance companies in CH.
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How much risk capital?

• The key question is how much risk capital a financial institution
should be required to hold to be deemed adequately capitalized
by the regulator.

• The core of this lecture aims to describe the framework proposed in
Artzner, Delbaen, Eber & Heath (1999).

8 / 43



Mathematics
of Risk

Management

Introduction

The solvency
problem

Acceptance sets

Risk measures

The concept

Value-at-Risk

Expected
Shortfall

Coherence
axioms

Conclusion
and outlook

Reading
material

Appendix:
Value-at-Risk
is not convex

Acceptable future positions

• The first step is to discriminate between “good” and “bad” financial
positions...

• by introducing the concept of an acceptance set.

• A set A of random variables is called an acceptance set if

X ∈ A , Y ≥ X =⇒ Y ∈ A .

This property is referred to as monotonicity.

• By Y ≥ X we mean Y (ω) ≥ X (ω) for all ω ∈ Ω.

• The acceptance set is specified by the regulator.
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Testing for acceptability

• Let A be the acceptance set specified by the regulator.

• Testing whether a company is adequately capitalized or not reduces
to establishing whether its financial position X belongs to A or not.

• Two situations:

• if X ∈ A , then the company is not required to hold risk capital;

• if X /∈ A , then the company is forced to hold risk capital...

• but how much?
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Risk measures: Quantification of risk capital

• Risk capital is determined by using appropriate risk measures.

• Let A be the acceptance set specified by the regulator.

• Assume the financial position X of a company is such that X /∈ A .

• The amount of risk capital the company has to reserve is equal to

ρA (X ) := inf{m ∈ R ; X + m ∈ A } .

• We call ρA the risk measure associated to A .

• The risk measure ρA gives a rule to compute risk capital according
to the acceptance set A :

X 7−→ ρA (X ) .
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Financial interpretation

• The risk measure associated to an acceptance set A is defined by

ρA (X ) := inf{m ∈ R ; X + m ∈ A } .

• The quantity ρA (X ) is an amount of capital, which we interpret as
risk capital.

• More precisely, ρA (X ) defines the minimal amount of capital that
has to be added to X in order to transform X into an acceptable
position (inf stands for the latin infimum).

• We might say that ρA (X ) is the cost of making X acceptable.

• If X ∈ A , then ρA (X ) ≤ 0.

• If X /∈ A , then ρA (X ) ≥ 0 and typically ρA (X ) > 0.
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General properties of risk measures

• Let A be an acceptance set, and ρA the corresponding risk measure.

• The following properties hold:

• X ≤ Y =⇒ ρA (X ) ≥ ρA (Y ) (monotonicity);

• ρA (X + c) = ρA (X )− c for all c ∈ R (cash additivity).

• Proof. If X ≤ Y , then by the monotonicity of A we have

{m ∈ R ; X + m ∈ A } ⊆ {m ∈ R ; Y + m ∈ A }

and monotonicity of ρA follows by taking the inf on both sides.

Now fix c ∈ R. Then

ρA (X + c) = inf{m ∈ R ; X + c + m ∈ A }
k=c+m

= inf{k − c ∈ R ; X + k ∈ A }
= inf{k ∈ R ; X + k ∈ A } − c

= ρA (X )− c .
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Example 1: Value-at-Risk

• Fix a level α ∈ (0, 1), and define the acceptance set Aα by

AVaRα := {X ; P(X < 0) ≤ α} .

Typically α is small, like α = 5%, α = 1%, α = 0.1%.

• Then X ∈ AVaRα is equivalent to X having a default probability
capped by α.
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Example 1: Value-at-Risk

• The corresponding risk measure ρAVaRα
is called Value-at-Risk

VaRα(X ) := ρAVaRα
(X ) = inf{m ∈ R ; P(X + m < 0) ≤ α} .

• Value-at-Risk is at the core of the Basel regimes and of the Solvency
II regime.
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Value-at-Risk for normal random variables

• Let X ∼ N (µ, σ2) be a normal random variable with mean µ and
variance σ2. For Z ∼ N (0, 1), set Φ(z) := P(Z ≤ z). Then

VaRα(X ) = −µ− σΦ−1(α) .

• Proof. Since X ∼ N (µ, σ2), we have Z := X−µ
σ
∼ N (0, 1). Hence

we obtain

VaRα(X ) = inf{m ∈ R ; P(X + m < 0) ≤ α}

= inf
{
m ∈ R ; P

(
Z <

−m − µ
σ

)
≤ α

}
= inf

{
m ∈ R ; P

(
Z ≤ −m − µ

σ

)
≤ α

}
= inf

{
m ∈ R ; Φ

(−m − µ
σ

)
≤ α

}
= inf

{
m ∈ R ;

−m − µ
σ

≤ Φ−1(α)
}

= inf{m ∈ R ; m ≥ −µ− σΦ−1(α)}
= −µ− σΦ−1(α) .
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Value-at-Risk for discrete random variables

• How to compute VaRα(X ) for some fixed level α ∈ (0, 1) when X is
a discrete random variable, for example

X =


8 [95%]
−3 [1%]

4 [4%]
?

• Consider a general discrete random variable X and reorder its
outcomes in such a way that

X =


x1 [p1]
x2 [p2]
· · · · · ·
xn−1 [pn−1]
xn [pn]

with
x1 > x2 > ... > xn.

• For instance in the above case we would have:

X =


8 [95%]
4 [4%]
−3 [1%]
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Value-at-Risk for discrete random variables: The

algorithm

• Start with line n

• If pn > α then STOP and VaRα(X ) = −xn
• Else, proceed to line n − 1

• If pn + pn−1 > α, then STOP and VaRα(X ) = −xn−1

• Else, proceed to line n − 2
• If pn + pn−1 + pn−2 > α then STOP and

VaRα(X ) = −xn−2

• · · · and so on

Summary:

• look at the probabilities defining X , starting from the lowest;

• as soon as you find a probability which is strictly greater than α, take
the corresponding value of X , with the opposite sign.
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Value-at-Risk for discrete random variables:

Examples

• Consider again

X =


8 [p1 = 95%]
4 [p2 = 4%]
−3 [p3 = 1%]

• We obtain based on the previous algorithm:

• If α = 0.5% then p3 > α and VaRα(X ) = 3

• If α = 3% then p3 < α and p3 +p2 > α so VaRα(X ) = −4
• If α = 4% then p3 < α and p3 +p2 > α so VaRα(X ) = −4
• If α = 5% then p3 < α, p3 + p2 = α and p3 + p2 + p1 > α

so VaRα(X ) = −8
• If α = 8% then p3 < α, p3 + p2 < α and p3 + p2 + p1 > α

so VaRα(X ) = −8.
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VaR: important remarks

Drawbacks:

• note that by the very definition the VaR at the confidence level α
does not give any information about the severity of losses which
occur with a probability less than 1− α

• discussing VaR from the point of view of coherence some further
problems appear: no account for diversification

• problem: based on historical data one can make statements of the
probability distribution

• Simon Johnson (MIT): ”VaR misses everything that matters when it
matters”
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Mathematicians: drawback noticed!

• Lord Turner, Chairman of the British Financial Services Authority
(FSA) (The Turner Review: A regulatory response to the global
banking crisis, March 2009), chapter I.4: ”misplaced reliance on
sophisticated maths”

• Paper ”An academic response to Basel II”
of Jon Danielsson, Paul Embrechts, etc. (LSE 2001)

• Coherent risk measures: P. Artzner, F. Delbaen, etc. (1997, 1999)

In spite of the criticism, the VaR approach is still used, mainly due to the
Basel requirements (Basel Committee for Banking Supervision).
→ Questionable point of the international regulation!
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An academic response to Basel II: some

quotation

• ”the proposed regulations fail to consider the fact that risk is
endogenous, Value-at-Risk can destabilize an economy and induce
crashes when they would not otherwise occur.

• statistical models used for forecasting risk have been proven to give
inconsistent and biased forecasts, notably under-estimating the joint
downside risk of different assets. The Basel Committee has chosen
poor quality measures of risk when better risk measures are available.

• Heavy reliance on credit agencies for the standard approach to credit
risk is misguided as they have been shown to provide conflicting and
inconsistent forecasts of individual clients’ creditworthiness. They are
unregulated and the quality of their risk estimates is largely
unobservable.”
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Example 2: Expected Shortfall

• Fix a level α ∈ (0, 1), and define the acceptance set A α by

AESα :=

{
X ;

1

α

∫ α

0

VaRβ(X ) dβ ≤ 0

}
.

Typically α is small, like above.

• If X has a continuous distribution, then X ∈ AESα is equivalent to

E[X1{X≤−VaRα(X )}] ≥ 0 .

This means that the expected shortfall of X beyond the VaRα level is
nonnegative.
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Example 2: Expected Shortfall

• The corresponding risk measure ρAESα
is called Expected Shortfall

ESα(X ) := ρAESα
(X ) = inf{m ∈ R ; X + m ∈ AESα} .

• It holds

ESα(X ) =
1

α

∫ α

0

VaRβ(X ) dβ .

• Expected Shortfall is implemented in the Swiss Solvency Test. Open
discussions about Basel III.
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Expected Shortfall for normal random variables

• Let X ∼ N (µ, σ2). Then it holds

ESα(X ) = −µ+
σ

α
Φ′(Φ−1(α)) .

• Proof. Since VaRβ(X ) = −µ− σΦ−1(β), we have

ESα(X ) =
1

α

∫ α

0

VaRβ(X ) dβ

=
1

α

∫ α

0

(−µ− σΦ−1(β)) dβ

β=Φ(z)
= −µ− σ

α

∫ Φ−1(α)

−∞
z Φ′(z) dz

Φ′(z)= 1√
2π

exp(−z2/2)

= −µ− σ

α
[−Φ′(z)]

Φ−1(α)
−∞

= −µ+
σ

α
Φ′(Φ−1(α)) .
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Value-at-Risk vs Expected Shortfall

• VaR is a frequency-based risk measure.

• A position X is acceptable for VaR if, and only if,

P(X < 0) ≤ α

 no information about the magnitude of a potential loss!

• ES is a severity-based risk measure.

• A (continuous) position X is acceptable for ES if, and only if,

E[X1{X≤−VaRα(X )}] ≥ 0

 positions with fat left tail are likely to be unacceptable!

• There are less acceptable positions in the ES sense. Indeed,
AESα ( AVaRα and so

ESα(X ) ≥ VaRα(X ) .

In other words, ES defines higher risk capital.
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Coherent acceptance sets

• Artzner, Delbaen, Eber, and Heath (1999) introduced the concept of
a coherent acceptance set.

• An acceptance set A is said to be coherent if

• X ,Y ∈ A , 0 < λ < 1 =⇒ λX + (1− λ)Y ∈ A (convexity);

• X ∈ A , λ ≥ 0 =⇒ λX ∈ A (conicity).

• Financial interpretation:

• convexity = portfolios of acceptable positions are still
acceptable, i.e. acceptability is preserved by diversification;

• conicity = acceptability is independent of the position size.
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Coherent risk measures

• If A is a coherent acceptance set, we say that ρA is a coherent risk
measure. It has the following properties:

• for all X ,Y and 0 < λ < 1

ρA (λX + (1− λ)Y ) ≤ λρA (X ) + (1− λ)ρA (Y ) (convexity);

• for all X and λ ≥ 0

ρA (λX ) = λρA (X ) (positive homogeneity).

• Financial interpretation:

• convexity = the risk capital for an aggregated portfolio is
controlled by the risk capital of its components;

• positive homogeneity = risk capital is proportional to the

position size.
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A remark on subadditivity

• Coherent risk measures are sometimes defined to be subadditive.

• Let A be an acceptance set satisfying conicity. Then convexity of A
is equivalent to

X ,Y ∈ A =⇒ X + Y ∈ A (closedness under addition).

• Let A be an acceptance set satisfying conicity. Then convexity of
ρA is equivalent to

ρA (X + Y ) ≤ ρA (X ) + ρA (Y ) for all X ,Y (subadditivity).

• Financial interpretation:

• closedness under addition = acceptability is preserved by
merging;

• subadditivity = the risk capital of a merged position is

controlled by the risk capital of the individual positions.
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Value-at-Risk vs Expected Shortfall (2)

• VaR and ES are both positively homogeneous;

• VaR is not convex, hence not coherent:
 VaR may penalize diversification!

• ES is convex, hence coherent:
 ES captures a diversification benefit.
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Value-at-Risk is not convex (hence not coherent)

• VaR is positively homogeneous.

• Proof. Recall Aα = {X ; P[X < 0] ≤ α}. Take X ∈ Aα and λ > 0.
Then

P[λX < 0] = P[X < 0] ≤ α ,
showing that λX ∈ Aα. Moreover, 0 = 0X ∈ Aα.

• We will show that VaR is not convex, i.e. for some X ,Y and
0 < λ < 1

VaRα(λX + (1− λ)Y ) > λVaRα(X ) + (1− λ)VaRα(Y ) .

Hence Value-at-Risk may penalize diversification!

• Lack of convexity typically depends on:

• skew distributions;
• fat-tailed distributions;

• copula structure.
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Expected Shortfall is coherent

• It is possible to prove that the acceptance set AESα is coherent,
hence

• the risk measure ESα = ρAESα
is also coherent.

• The proof is not difficult but long. We refer to Section 4.4 in Föllmer
and Schied (2011).
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A journey through citations (2)

The Economist, issue Feb. 11, 2010: Number-crunchers crunched!

• ”Thanks to Black-Scholes, ... quants poured into the industry. By
2005 they accounted for 5% of all finance jobs, against 1.2% in 1980,
and probably a much higher proportion of pay.
By 2007 finance was attracting a quarter of all graduates from the
California Institute of Technology.”

• ”Models increased risk exposure instead of limiting it”’ says Mr
Taleb. ”They can be worse than nothing, the equivalent of a
dangerous operation on a patient who would stand a better chance if
left untreated”.

• ”Not all models were useless. Those for interest rates and foreign
exchange performed roughly as they were meant to.”
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A journey through citations (3)

S. Shreve, Don’t blame the quants, 2008

• ”When a bridge collapses, no one demands the abolition of civil
engineering. [...]
If engineering is to blame the solution is

better – not less – engineering.

Furthermore, it would be preposterous to replace the bridge with a
slower, less efficient ferry rather than to rebuild the bridge and
overcome the obstacle”
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What to do now?

We need:

• transparent financial products and robust procedures

• stronger buffers for risk

• an intelligent regulation of financial markets on international level

• appropriates stimulating mechanisms

⇐= this requires more quantitative analysis and mathematics, not less!

... and this especially for the project of a stronger international regulation!
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More or less?

We need more quantitative analysis:

• even a regulatory measure which seems very plausible at the
beginning could be an open door for arbitrage-strategies; here one
needs careful analysis supported also by mathematical models

• even for incentive schemes mathematics is needed! In the economics
literature it belongs to the so-called principal-agent problem and to
the mechanism design

We need less quantitative analysis:

• there is no ”correct” mathematical model for the financial markets

• any model is somehow ”naive” and can become dangerous when it
replaces the reality
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Closing

• This talk aimed to the conclusion that rules will have to
be both tightened and better enforced to avoid future
crises but that all the reforms in the world will never
guarantee total safety :)

THANK YOU
FOR YOUR ATTENTION !

http://www.math.ethz.ch/˜farkas

Invitation:
Risk Day at ETH Zürich: Friday, 11. September 2015
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Reading material (Selection)

Artzner, Ph., Delbaen, F., Eber, J.-M., Heath, D.:
Coherent measures of risk,
Mathematical Finance, 9: 203-228 (1999)

Farkas, W., Koch-Medina, P., Munari, C.:
Capital requirements with defaultable securities,
Insurance: Mathematics and Economics, 55, 58-67, (2014)

Föllmer, H., Schied, A.:
Stochastic finance: an introduction in discrete time, De Gruyter (2011)

Kalkbrenner, M., Lotter, H., Overbeck, L.:
Sensible and efficient capital allocation for credit portfolios, RISK, 19-24
(2004)

Leippold, M., Trojani, F., Vanini, P.:
Equilibrium impact of Value-at-Risk regulation, Journal of Economic
Dynamics and Control, 30: 1277-1313 (2006)

Mc Neil, A.J., Frey, R., Embrechts, P.:
Quantitative Risk Management: Concepts, Techniques, Tools, Princeton
University Press (2005)
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Value-at-Risk is not convex: Example on credit

portfolios (1)

• You are a bank and you give a loan of 100 CHF.

• The loan interest rate is r = 2%.
• The default probability of the counterpart is p = 0.8%.

• The VaR-level is α = 1%.

• The corresponding position at maturity is

X =

{
100r = 100(1 + r)− 100 [ 1− p = 99.2% ]

−100 [ p = 0.8% ]

• Recall
VaRα(X ) = inf{m ∈ R ; P(X + m < 0) ≤ α} .

• How to compute VaRα(X )?
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Value-at-Risk is not convex: credit portfolios (2)

• Recall α = 1% and

X =

{
100r [ 1− p = 99.2% ]

−100 [ p = 0.8% ]

• It holds VaRα(X ) = −100r .

• Proof. We have

P(X + m < 0) =


1 if m < −100r

p = 0.8% if − 100r ≤ m < 100

0 if m ≥ 100

Hence VaRα(X ) = inf{m ∈ R ; P(X + m < 0) ≤ α} = −100r .

• “Trick”: look at the probabilities defining X , starting from the
lowest. As soon as you find a probability which is strictly greater than
α, take the corresponding value of X , with the opposite sign.
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Value-at-Risk is not convex: credit portfolios (3)

• Assume you want to diversify, and you give two 50 CHF loans.

• The default probability of each counterpart is p = 0.8%.

• Defaults are independent.

• Take Y ,Z ∼ X with Y ,Z independent. The new position at
maturity is

1

2
Y +

1

2
Z =


100r [ (1− p)2 = 98.4064% ]

50r − 50 [ 2p(1− p) = 1.5872% ]

−100 [ p2 = 0.0064% ]

• Given α = 1%, what is VaRα( 1
2
Y + 1

2
Z)?

• Using the “trick” we get VaRα( 1
2
Y + 1

2
Z) = −(50r − 50).
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Value-at-Risk is not convex: credit portfolios (4)

• Finally we show that Value-at-Risk is not convex.

• Indeed, on one side

VaRα

(
1

2
Y +

1

2
Z

)
= 50− 50r = 49 ,

while on the other

1

2
VaRα(Y ) +

1

2
VaRα(Z) =

1

2
VaRα(X ) +

1

2
VaRα(X )

= VaRα(X )

= −100r

= −2 .

• As a result,

VaRα

(
1

2
Y +

1

2
Z

)
>

1

2
VaRα(Y ) +

1

2
VaRα(Z) .
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